Книга с математическими загадками
Обновлено: 22.11.2024
Чужой компьютер
УЧИМСЯ ИГРАЯ.
вернуться к странице
УЧИМСЯ ИГРАЯ. запись закреплена
Математические головоломки профессора Стюарта
Год издания: 2017
Язык книги: русский
Доступен ознакомительный фрагмент книги!
Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения. . Полная аннотация
Комментировать : 0 : 0 : 0 : 0 : 0 : 0
Научные фокусы и загадки
Год издания: 2009
Язык книги: русский
Доступен ознакомительный фрагмент книги!
«Научные фокусы и загадки» — это увлекательная коллекция хитрых вопросов, занимательных задач, интересных загадок, головоломок, фокусов и игр. Эта книга для веселых, находчивых и сообразительных читателей! . Полная аннотация
Следующая загадка
- ЖАНРЫ 360
- АВТОРЫ 277 205
- КНИГИ 653 846
- СЕРИИ 25 022
- ПОЛЬЗОВАТЕЛИ 611 274
ЛитМир - Электронная Библиотека > Гарднер Мартин > 1000 развивающих головоломок, математических загадок и ребусов для детей и взрослых
Добавить похожую книгу
Автор: Арнольд Питер
Похожа
Непохожа
10 (1)
Автор: Соколова Алла Леонидовна
Похожа
Непохожа
10 (1)
Автор: Дворецкий Марк Израилевич, Перваков Олег Викторович
Похожа
Непохожа
1000 развивающих головоломок, математических загадок и ребусов для детей и взрослых
Автор: Гарднер Мартин
Оценка: 3 ( 2 )
Книга закончена
Язык книги: Русский
Язык оригинальной книги: Английский
Переводчик(и): Кульнева Мария Леонидовна
Издатель: Аст, Астрель
Город печати: Москва
Год печати: 2010
Выберите формат скачивания:
djvu | QR код | Размер: 8 Мбайт | Добавлено 30 января 2015, 8:03 |
Настоящее издание представляет собой авторизованный перевод оригинального английского издания «Mathematical Magic Show» (автор Martin Gardner), впервые опубликованного в 1989 г. Математической ассоциацией Америки: The Mathematical Associations of America (Incorporated). Любители математических головоломок найдут в этой книге множество увлекательных задач, интересных игр, занимательных эпизодов из истории науки и математических курьёзов от всемирно известного популяризатора науки Мартина Гарднера.
Следующая загадка
«Мам, помоги мне с домашкой по математике!», «Пап, я не понимаю задачу, объясни!» – любой родитель младшеклассника рано или поздно сталкивается с такими просьбами. Однако порой мы сами не можем разобраться, как выполнить задание, или наше. . Полная аннотация
Комментировать : 0 : 0 : 0 : 0 : 0 : 0
Следующая загадка
Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана. Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным». Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей. Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.
Оглавление
- Перельман Яков Исидорович
- Первая сотня головоломок
Приведённый ознакомительный фрагмент книги Для юных математиков. Веселые задачи предоставлен нашим книжным партнёром — компанией ЛитРес.
Первая сотня головоломок
Цель этой книжечки — дать материал для приятной умственной гимнастики, для изощрения сообразительности и находчивости. Предназначенная наполнить досуг юных математиков, книжка содержит, однако, не исключительно математические головоломки: наряду с задачами арифметическими и геометрическими в сборнике рассеяны также головоломки из области физики, мироведения, логики. Есть и задачи, не примыкающие к какому-либо учебному предмету, но все же полезные как упражнения, подготовляющие ум к более серьезной работе. Так, задачи на перестановки и размещения приучают к систематическим поискам решения; зрительные обманы изощряют наблюдательность; развлечения с разрезыванием фигур и составлением силуэтов развивают геометрическое воображение.
На русском языке имеются уже сборники сходного типа. Появление еще одного было бы излишне, если бы составитель не стремился освежить традиционный материал несколькими десятками частью новых, частью мало известных задач, придуманных им самим или почерпнутых из иностранных источников. Задачи предполагают у читателя лишь весьма элементарные познания и имеют в виду преимущественно тех, кому еще предстоит изучение математики [1] .
Второе издание этой книги, вышедшее в 1919–1920 гг. в весьма большом числе экземпляров [2] , было перепечатано с первого без существенных изменений.
Для третьего издания текст заново проредактирован и некоторые задачи, по различным соображениям, заменены другими.
Октябрь, 1924 г.
Головоломные размещения и занимательные перестановки
ЗАДАЧА № 1 Белки и кроликиПеред вами восемь пней, перенумерованные на нашем рисунке. На пнях № 1 и № 3 сидят кролики, на № 6 и № 8 — белки. Но и белки, и кролики почему-то недовольны своими местами и хотят обменяться пнями: белки желают сидеть на местах кроликов, а кролики — на местах белок. Они могут сделать это, перепрыгивая с пня на пень — однако только по линиям, обозначенным на рисунке.
Как они могли бы это сделать? Помните следующие правила:
1) прыгать с пня на пень можно только по тем линиям, которые обозначены на рисунке; каждый зверёк может делать и несколько прыжков кряду;
2) два зверька на одном пне поместиться не могут, — поэтому прыгать можно только на свободный пень.
Имейте также в виду, что зверьки желают обменяться местами наименьшим числом прыжков. Впрочем, меньше чем 16-ю прыжками они сделать этого не могут.
ЗАДАЧА № 2 Чайный сервизМне пришлось как-то целый вечер ожидать поезда на маленькой станции. Не было ни книг, ни газет, ни собеседников, и я не знал, чем наполнить часы ожидания. К счастью, я вспомнил об одной занимательной задаче, которая незадолго до того попалась мне в иностранном журнале. Задача состояла в следующем.
Стол разграфлен на 6квадратов, в каждом из которых, кроме одного, помещается какой-нибудь предмет. Я воспользовался чайной посудой и разместил но квадратам 3 чашки, чайник и молочник, как показано на рисунке.
Сущность задачи в том, чтобы взаимно переменить места чайника и молочника, передвигая предметы из одного квадрата в другой по определенным правилам, — а именно:
1) перемещать предмет только в тот квадрат, который окажется свободным;
2) не передвигать предметов по диагонали квадрата;
3) не переносить один предмет поверх другого;
4) не помещать в квадрат более одного предмета, даже временно.
Задача эта имеет много решений, но интересно найти самое короткое, — т. е. обменять местами чайник и молочник в наименьшее число ходов.
В поисках этого кратчайшего решения я не заметил, как прошел вечер; пришлось покинуть станцию, не найдя в тот вечер кратчайшего решения.
ЗАДАЧА № 3 Автомобильный гаражНа нашем чертеже изображен план автомобильного га ража с помещениями для двенадцати автомобилей. Но по мещение так неудобно, так мало, что заведующий гаражем постоянно наталкивается на затруднения. Вот одно из них.
Предположите, что восемь автомобилей стоят в указанных здесь положениях. Как могут автомобили 1, 2, 3 и 4 перемениться местами с автомобилями 5, 6, 7 и 8? И при каком способе обмена они сделают наименьшее число переездов?
Надо заметить, что два автомобиля одновременно двигаться не могут и что в квадрате не могут одновременно находиться два автомобили.
ЗАДАЧА № 4 Три дорогиТри брата — Петр, Павел и Яков — получили для обработки три участка земли, расположенные рядом, невдалеке от их домов. На чертеже вы видите расположение домов Петра, Павла и Якова и соответствующих земельных участков.
Вы замечаете, что участки расположены не совсем удобно для работающих на них, — но братья не могли сговориться об обмене.
Каждый устроил огород на своем участке, и так как кратчайшие пути к огородам пересекались, то между братьями вскоре начались пререкания, перешедшие в ссоры. Желая избегать всяких столкновений, братья решили отыскать такой путь к своим участкам, чтобы не пересекать друг другу дороги. После долгих поисков они нашли такие три пути и теперь ежедневно ходят на свои огороды, не встречаясь друг с другом.
Можете ли вы указать эти пути?
ЗАДАЧА № 5 Мухи на занавескеНа оконной занавеске, разрисованной квадратиками, уселось 9 мух. Случайно они расположились так, что никакие две мухи не оказывались в одном и том же прямом или косом ряду (см. рис. 5).
Спустя несколько минут три мухи переменили свое место и переползли в соседние, незанятые клетки; остальные 6 остались на местах. И курьезно: хотя три мухи перешли на другие места, все 9 снова оказались размещенными так, что никакая пара не находилась в одном прямом или косом ряду.
Можете ли вы сказать, какие три мухи пересели и какие квадратики они избрали?
ЗАДАЧА № 6 Дачники и коровыВокруг озера выстроены четыре дачи, а поближе к берегу — четыре коровника. Владельцы дач желают соорудить сплошной забор так, чтобы озеро было закрыто от коров, но чтобы в то же время оно было доступно для дачников, желающих купаться.
Исполнимо ли это желание? Если исполнимо, то как надо построить забор, чтобы он имел наименьшую длину и, следовательно, обошелся возможно дешевле?
ЗАДАЧА № 7 Десять домовНекто желал построить 10 домов, соединенных между собою крепкими стенами; стены должны тянуться пятью прямыми линиями, с 4-мя домами на каждой линии.
Приглашенный зодчий представил план, который вы видите здесь на рисунке 7-м.
Но заказчик остался недоволен этим планом: ведь при таком расположении можно подойти извне к любому дому, а ему хотелось, чтобы если не все, то хоть один или два дома были защищены стенами от нападения извне. Зодчий возразил, что нельзя удовлетворить этому условию, раз 10 домов должны быть расположены по 4 на каждом из 5-ти заборов. Но заказчик настаивал на своем.
Долго ломал зодчий голову над этой задачей и наконец разрешил ее. Может быть, и вам посчастливится найти такое расположение 10 домов и 5 соединяющих их прямых заборов, чтобы требуемое условие было удовлетворено.
ЗАДАЧА № 8 Деревья в саду— Оставь только 5 рядов деревьев, по 4 дерева в каждом ряду. Остальные сруби и возьми их себе на дрова за работу.
Когда рубка кончилась, садовник вышел посмотреть работу. К огорчению, сад был почти опустошен: вместо 20 деревьев работник оставил только 10, срубив 39 деревьев!
— Почему же ты вырубил так много? Ведь тебе сказано было оставить 20 деревьев, — упрекал его садовник.
— Нет, не 20, а сказано было оставить 5 рядов по 4 дерева в каждом. Я так и сделал: посмотрите.
И в самом деле: садовник с изумлением убедился, что оставшиеся на корню 10 деревьев образуют 5 рядов по 4 дерева в каждом. Приказание его было исполнено буквально, — и все-таки вместо 29 деревьев работник вырубил 39.
Как же ухитрился он это сделать?
ЗАДАЧА № 9 Белая мышьВсе 13 мышей, окружающие эту кошку, обречены попасть ей на обед. Но кошка желает съесть их в определенном порядке, — а именно, каждый раз она отсчитывает 13-ю мышь по кругу в том направлении, в каком эти мыши глядят, — и съедает ее. С какой мыши она должна начать, чтобы белая оказалась съеденной последнею?
ЗАДАЧА № 10 Из 18 спичек
Из 18 спичек нетрудно сложить два четырехугольника так, чтобы один был вдвое больше другого по площади (рис. 10).
Но сложите из тех же спичек два таких четырехугольника, чтобы один был в три раза больше другого по площади!
РЕШЕНИЯ ЗАДАЧ №№ 1-10
Решение задачи № 1Ниже указан самый короткий способ обмена. Цифры показывают, с какого пня на какой надо прыгать (напр., «1–5» значит: белка прыгает с пня 1-го на 5-й). Всех прыжков понадобится 16, а именно:
1-5; 3–7, 7–1; 8–4, 4–3, 3–7; 6–2, 2–8, 8–4, 4–3; 5–6, 6–2, 2–8; 1–5, 5–6; 7–1.
Решение задачи № 2Для удобства мы заменим чайную посуду цифрами. Тогда задача представится в таком виде:
Надо обменять места 2 и 5. Вот порядок, в каком следует двигать предметы на свободный квадрат:
2, 5, 4, 2, 1, 3, 2, 4, 5, 1, 4, 2, 3, 4, 1, 5, 2.
Задача решается в 17 ходов — более короткого решения нет.
Решение задачи № 3В этой таблице показаны в последовательном порядке все переезды, необходимые для того, чтобы вывести заведующего гаражом из затруднения. Цифры обозначают номера автомобилей, а буквы — соответствующие помещения. Всех переездов понадобится 43. Вот они:
«6 — G» означает: автомобиль № 6 становится в отделение G, и т. п.
Решение задачи № 4Три непересекающиеся пути показаны на этом чертеже:
Петру и Павлу приходится идти довольно извилистыми путями, — но зато братья избегают нежелательных встреч между собой.
Решение задачи № 5Стрелки на рисунке показывают, какие мухи переменили место и с каких клеток oни пересели.
Решение задачи № 6
Забор можно построить двояко. Вот чертежи, показывающие направление ограды.
Забор, построенный по второму плану, короче и, следовательно, дешевле.
Решение задачи № 7
Вот единственное расположение, при котором два дома безопасны от нападения извне.
Вы видите, что 10 до мов расположены здесь, как требовалось в задаче: по 4 на каждой из пяти прямых стен.
Решение задачи № 8Деревья, оставшиеся несрубленными, были расположены так (рис. 15):
Как видите, они образуют 5 прямых рядов, и в каждом ряду 4 дерева.
Решение задачи № 9Кошка должна съесть первой ту мышь, которая находится на нашем рисунке у копчика ее хвоста.
Попробуйте, начав с этой мыши счет по кругу, зачеркивать каждую 13-ю мышь, — вы убедитесь, что белая мышь будет зачеркнута последней.
Решение задачи № 10
На чертеже показано, как надо сложить из 18 спичек два четырехугольника, чтобы один был втрое больше другого по площади. Вторым четырехугольником является параллелограмм с высотою, равною 1 1 /2 спичкам.
Площадь параллелограмма равна его основанию, умноженному на его высоту. В основании нашего параллелограмма лежат 4 спички, высота же равна 1 1 /2спичкам; следовательно, площадь равна 4 x 1 1 /2, т. е. 6таким квадратикам, каких в меньшем четырехугольнике 2. Итак, нижний четырехугольник имеет площадь втрое большую, нежели верхний.
Десять легких задач
ЗАДАЧА № 11 БочкиВ магазин доставили 6бочек керосину. На этом рисунке обозначено, сколько ведер было в каждой бочке. В первый же день нашлось два покупателя; один купил целиком две бочки, другой — три, причем первый купил вдвое менее керосина, чем второй. Не пришлось даже раскупоривать бочек.
И тогда на складе из 6 бочек осталась всего одна. Какая?
ЗАДАЧА № 12 До половиныВ бочке налита вода, по-видимому, до половины. Но вы хотите узнать точно, половина ли в ней налита, или больше половины, или же меньше половины. У вас нет ни палки, ни вообще инструмента для обмера бочки. Втулки бочка не имеет. Каким образом могли бы вы убедиться, налита ли вода ровно до половины?
ЗАДАЧА № 13 Невозможное равенствоКстати, о полупустой бочке. Полупустая бочка — это ведь то же, что и полуполная. Но если половины равны, то должны быть равны и целые. Полупустая бочка равна полуполной, — значит, пустая бочка должна равняться полной. Выходит, что пустой равен полному!
Почему получился такой несообразный вывод?
ЗАДАЧА № 14 Число волосКак вы думаете: существует ли на свете два человека с одинаковым числом волос?
Вы ответите, пожалуй, что два совершенно лысых человека имеют волос поровну, потому что и у того и у другого ноль волос.
Это, если хотите, правильно.
Но я спрашиваю не о безволосых людях, а о таких, у которых имеются на голове густые волосы. Найдется ли в мире два человека, у которых число волос на голове было бы в точности одинаково?
А может быть, двое таких людей отыщутся в Ленинграде или Москве?
ЗАДАЧА № 15 Цена переплетаКнига в переплете стоит 2 руб. 50 коп. Книга на 2 рубля дороже переплета. Сколько стоит переплет?
ЗАДАЧА № 16 Цена книгиИванов приобретает все нужные ему книги у знакомого ему книгопродавца со скидкою в 20 процентом. С 1-го января цены всех книг повышены на 20 процентов. Иванов решил, что он будет теперь платить за книги столько, сколько остальные покупатели платили до 1-го января. Прав ли он?
ЗАДАЧА № 17 Головы и ногиНа лугу паслись лошади под надзором кучеров. Если бы вы пожелали сосчитать, сколько всех ног на лугу, то насчитали бы 82 ноги. А если бы пересчитали головы, то оказалось бы, что всех голов — лошадиных и человеческих — 26.
Сколько было лошадей и сколько кучеров?
Надо заметить, что ни безногих лошадей, ни калек-кучеров на лугу не было.
ЗАДАЧА № 18 На счётахВы, без сомнения, умеете считать на конторских счётах и понимаете, что отложить на них 25 рублей — задача очень легкая.
Но задача станет замысловатее, если вам поставят условие: сделать это так, чтобы отодвинуть не 7 косточек, как обыкновенно, а 25 косточек.
Попробуйте, в самом деле, показать на конторских счётах сумму в 25 рублей, отложив ровно 25 косточек.
Конечно, на практике так никогда не делается, но задача все же разрешима, и ответ довольно любопытен.
ЗАДАЧА № 19 Редкая монетаСобирателю редкостей сообщили, что в Риме при раскопках найдена монета с надписью по-латыни:
55-й год до Р. X.
— Монета, конечно, поддельная, — ответил собиратель.
Как мог он знать это, не видя ни самой монеты, ни даже ее изображения?
ЗАДАЧА № 20 СпаржаЖенщина обыкновенно покупает у зеленщика спаржу большими пучками, каждый 40 сантиметров в окружности. Покупая, она мерит их, чтобы убедиться, что ее не обманывают. Но однажды у торговца не оказалось 40-сантиметрового пучка и он предложил покупательнице за те же деньги два тонких пучка, каждый по 20 сантиметров в обхвате.
Женщина обмерила два пучка и, убедившись, что обхват каждого действительно равен 20 сантиметрам, заплатила зеленщику столько же, сколько платила раньше за один толстый пучок.
Прогадала ли она или выгадала на этой покупке?
РЕШЕНИЯ ЗАДАЧ №№ 11-20
Решение задачи № 11т. е. второй покупатель приобрел вдвое больше керосину, чем первый.
Осталась непроданной 20-ведерная бочка.
Это единственный возможный ответ. Другие сочетания не дают требуемого соотношения.
Решение задачи № 12
Самый простой способ — наклонить бочку так, чтобы вода дошла до края. Если при этом немного обнаружится дно бочки, — значит, вода стояла ниже половины. Если дно очутится ниже уровня воды, — значит, вода была налита больше, чем до половины. И наконец, если верхний край дна будет как раз на уровне воды, — значит, вода налита ровно до половины.
Величайшие математические задачи
Год издания: 2015
Язык книги: русский
Доступен ознакомительный фрагмент книги!
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной. . Полная аннотация
Комментировать : 0 : 0 : 0 : 0 : 0 : 0
Математика в занимательных рассказах
Год издания: 2012
Язык книги: русский
Доступен ознакомительный фрагмент книги!
В книге раскрываются математические загадки, зашифрованные в приключенческих и фантастических рассказах известных авторов Герберта Уэллса, Жюля Верна, Курда Лассвица и др. Возможно ли путешествие на мыльном пузыре? Существует ли механизм для. . Полная аннотация
Комментировать : 0 : 0 : 0 : 0 : 0 : 0
Читайте также: