Выражение для массы фотона
Обновлено: 21.11.2024
Как мы уже говорили, испускание электронов с поверхности металла под действием падающего на него излучения соответствует представлению о свете как об электромагнитной волне, т.к. электрическое поле электромагнитной волны воздействует на электроны в металле и вырывает некоторые из них. Но Эйнштейн обратил внимание на то, что предсказываемые волновой теорией и фотонной (квантовой корпускулярной) теорией света детали фотоэффекта существенно расходятся.
Итак, мы можем измерить энергию вылетевшего электрона, исходя из волновой и фотонной теории. Чтобы ответить на вопрос, какая теория предпочтительней, рассмотрим некоторые детали фотоэффекта.
Начнем с волновой теории, и предположим, что пластина освещается монохроматическим светом. Световая волна характеризуется параметрами: интенсивностью и частотой (или длиной волны). Волновая теория предсказывает, что при изменении этих характеристик происходят следующие явления:
· при увеличении интенсивности света число выбитых электронов и их максимальная энергия должны возрастать, т.к. более высокая интенсивность света означает большую амплитуду электрического поля, а более сильное электрическое поле вырывает электроны с большей энергией;
выбитых электронов; кинетическая энергия зависит только от интенсивности падающего света.
Уравнение (2.3.1) называется уравнением Эйнштейна для внешнего фотоэффекта.
На основе этих соображений, фотонная (корпускулярная) теория света предсказывает следующее.
1. Увеличение интенсивности света означает увеличение числа налетающих фотонов, которые выбивают с поверхности металла больше электронов. Но так как энергия фотонов одна и та же, максимальная кинетическая энергия электрона не изменится (подтверждается I закон фотоэффекта).
2. При увеличении частоты падающего света максимальная кинетическая энергия электронов линейно возрастает в соответствии с формулой Эйнштейна (2.3.1). (Подтверждение II закона фотоэффекта). График этой зависимости представлен на рис. 2.3.
Рис. 2.3
Итак, мы видим, что предсказания корпускулярной (фотонной) теории сильно отличаются от предсказаний волновой теории, но очень хорошо совпадают с тремя экспериментально установленными законами фотоэффекта.
Уравнение Эйнштейна было подтверждено опытами Милликена, выполненными в 1913–1914 гг. Основное отличие от опыта Столетова в том, что поверхность металла подвергалась очистке в вакууме. Исследовалась зависимость максимальной кинетической энергии от частоты и определялась постоянная Планка h.
Для объяснения теплового излучения Планк предположил, что свет испускается квантами. Эйнштейн при объяснении фотоэффекта предположил, что свет поглощается квантами. Также Эйнштейн предположил, что свет и распространяется квантами, т.е. порциями. Квант световой энергии получил название фотон. Т.е. опять пришли к понятию корпускула (частица).
Наиболее непосредственное подтверждение гипотезы Эйнштейна дал опыт Боте, в котором использовался метод совпадения (рис. 2.4).
Рис. 2.4
Тонкая металлическая фольга Ф помещалась между двумя газоразрядными счетчиками Сч. Фольга освещалась слабым пучком рентгеновских лучей, под действием которых она сама становилась источником рентгеновских лучей (это явление называется рентгеновской флуоресценцией). Вследствие малой интенсивности первичного пучка, количество квантов, испускаемых фольгой, было невелико. При попадании квантов на счетчик механизм срабатывал и на движущейся бумажной ленте делалась отметка. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, оба счетчика должны были срабатывать одновременно и отметки на ленте приходились бы одна против другой. В действительности же наблюдалось совершенно беспорядочное расположение отметок. Это можно объяснить лишь тем, что в отдельных актах испускания возникают световые частицы, летящие то в одном, то в другом направлении. Так было экспериментально доказано существование особых световых частиц – фотонов.
Фотон обладает инертной массой, которую можно найти из соотношения :
Фотон движется со скоростью света c = 3·10 8 м/с. Подставим это значение скорости в выражение для релятивистской массы:
Фотон – частица, не обладающая массой покоя. Она может существовать, только двигаясь со скоростью света c.
Найдем связь энергии с импульсом фотона.
Мы знаем релятивистское выражение для импульса:
Из (2.3.3) найдем :
Подставив выражение (2.3.5) в выражение для энергии (2.3.4), получим связь между энергией и импульсом:
Но т. к. для покоящегося фотона , . Окончательно получим:
Т.к. , то можно записать:
Обозначим где k – волновое число. Теперь выразим импульс через волновой вектор :
Читайте также:
| | | | | | | | | | | | | | | |