Умножение на сопряженное выражение

Обновлено: 22.12.2024

Назовём выражение А , зависящее от одной или нескольких переменных (и тождественно не равное нулю), сопряжённым к выражению В, содержащему модули, если произведение АВ не содержит модулей.

Например, выражение вида является сопряжённым к выражению , и наоборот, выражение является сопряжённым к выражению , поскольку их произведение не содержит модулей. Рассмотрим пример, где приём умножения на сопряженное выражение (в указанном выше смысле) позволяет существенно упростить решение задачи.

Пример №277.

Решение:

Поищем более эффективный способ решения, чем стандартный метод интервалов. Умножим неравенство на положительное выражение (сопряжённое к числителю левой дроби), и одновременно поделим неравенство на положительное выражение (сопряжённое к знаменателю левой дроби). В результате не только исчезнут все модули в левой части неравенства, но и, в результате сокращения на упростится правая часть:

Последнее неравенство равносильно системе

Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:

Эти страницы возможно вам будут полезны:

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: