Квадратичный интегральный критерий качества работы аср определяется по выражению
Обновлено: 22.11.2024
Интегральные оценки качества регулирования характеризует суммарное отклонение реального переходного процесса в системе от идеализированного переходного процесса.
В качестве идеализированного процесса обычно принимается ступенчатый (скачкообразный) переходный процесс или экспоненциальный процесс с заданными параметрами экспоненты.
До настоящего времени остаётся не выясненным, какой из интегральных критериев линейный или квадратичный выбрать для оптимизации настроек регуляторов.
В данной публикации определение оптимальных настроек регулятора осуществляется на основе критерия оптимальности в виде суммы линейного и квадратичного интегральных показателей качества регулирования.
Чтобы осуществить такой выбор, вначале необходимо провести серию предварительных расчетов для различных значений отношения постоянных времени дифференцирования и интегрирования α=Td/Ti и выбрать несколько значений α, которые обеспечивает наибольшее значение отношения Kr/Ki.
После этого, имея несколько вариантов настроек регулятора, построить для них переходные процессы в замкнутой системе и по предложенному критерию отобрать оптимальные настройки.
Программная реализация расчёта оптимальных настроек регулятора
Расчёт можно выполнить как в математическом пакете, так и на любом языке программирования. Однако, по причине наличия мощных библиотек для численного интегрирования и простой реализации поиска локальных экстремумов в списках, я выбрал высокоуровневый язык программирования Python.
Для упрощения поисковых процедур в начале программы целесообразно установить исходные данные и привести готовые списки частот отдельно для каждой решаемой задачи:
Подготовка исходных данныхВводим передаточную функцию для водяного теплообменника с учётом корневого показателя колебательности m и передаточную функцию ПИД регулятора с учётом Kr, Ti, Td, остальные функции вспомогательные:
Ввод основных и вспомогательных функций с учётом комплексной арифметикиПостроим три плоскости настройки ПИД регулятора для отношений alfa=Td/Ti=0.2,alfa=Td/Ti=0.7 alfa=Td/Ti=1.2.
Поиск оптимальных значений alfaДля запаса устойчивости m=0.386 при значениях alfa -0.2,0,4,0.7 построим D –разбиения для определения критических значения alfa.
Общая плоскость всех настроечных параметровСтроим график зависимости Ki от частоты w для двух выявленных из предыдущего графика значений alfa: 0.2; 0.7. Настройки Ki определяются по резонансным частотам.
Определяем три варианта настроек ПИД регулятора:
Определяем динамику АСР по значению частотного показателя колебательности:
Определяем оптимальные настройки регулятора по предложенному интегральному критерию качества регулирования:
Численный и графический анализ оптимальности полученных настроек
Результат работы программы –текстовый вывод:
Настройки №1 ПИД регулятора (wa =0.066,m=0.366,alfa=0.7): Kr=4.77; Ti=21.682; Ki=0.22; Td=15.177
Настройки №2 ПИД регулятора(wa =0.056,m=0.366,alfa=0.2): Kr=2.747; Ti=50.87; Ki=0.054; Td=10.174
Настройки №3 ПИД регулятора(wa =0.085,m=0.366,alfa=0.7): Kr=3.747; Ti=26.387; Ki=0.142; Td=18.471
Линейный интегральный критерий качества I1 =194.65 (настройки №1)
Квадратичный интегральный критерий качества I2 =222.428 (настройки №1
Линейный интегральный критерий качества I1 =179.647 (настройки №2 )
Квадратичный интегральный критерий качества I2 =183.35 (настройки №2)
Линейный интегральный критерий качества I1 =191.911 (настройки №3 )
Квадратичный интегральный критерий качества I2 =204.766 (настройки №3)
Оптимальные параметры по интегральным критериям:
Настройки №2 ПИД регулятора(wa =0.056,m=0.366,alfa=0.2): Kr=2.747; Ti=50.87; Ki=0.054; Td=10.174
Читайте также: