Вероятность что случайная величина примет значение

Обновлено: 14.11.2024

Случайная величина(дискретная) - это функция из множества элементарных исходов в множество вещественных не отрицательных чисел. Множество элементарных исходов должно быть конечным или счётным множеством чисел.

Случайной величиной является число очков, выпавших при бросании игральной кости(она принимает значения из дискретного числового множества M=

Если [math]y[/math] — случайная величина, то функция [math]F(x) = Fy (x) = P(y = x)[/math] называется функцией распределения случайной величины [math]y[/math] . Здесь [math]P(y = x)[/math] — вероятность того, что случайная величина [math]y[/math] принимает значение [math]x[/math] .

Если [math]y[/math] — дискретная случайная величина, принимающая значения [math]x_1 \lt x_2 \lt \dots \lt x_i \lt \dots[/math] с вероятностями [math]p_1 \lt p_2 \lt \dots \lt p_i \lt \dots[/math] , то таблица вида

[math]x_1[/math] [math]x_2[/math] . [math]x_i[/math]
[math]p_1[/math] [math]p_2[/math] . [math]p_i[/math]

Математи́ческое ожида́ние — мера среднего значения случайной величины в теории вероятностей.

Если [math]X[/math] — Дискретное распределение, имеющая Распределение вероятности

О непрерывной случайной величине (НСВ) я неоднократно упоминал в предыдущих статьях, и поэтому, если вы зашли с поисковика и/или не совсем в теме, то начните с первого урока о случайных величинах. После чего продолжаем и сразу вспоминаем разницу:

В отличие от дискретной случайной величины, НСВ может принять любое действительное значение из некоторого промежутка ненулевой длины, что делает невозможным её представление в виде таблицы (т.к. действительных чисел несчётно много). В этой связи непрерывную случайную величину задают функциями двух типов, названия которых вы видите в заголовке.

Функция распределения непрерывной случайной величины определяется точно так же, как и функция распределения ДСВ:

– вероятность того, что случайная величина примет значение, МЕНЬШЕЕ, чем переменная , которая «пробегает» все значения от «минус» до «плюс» бесконечности. Таким образом, учитываются все значения, которые В ПРИНЦИПЕ может принять произвольная случайная величина. С увеличением функция распределения «накапливает» (суммирует) вероятности, а значит, является неубывающей и изменяется в пределах . По этой причине её иногда называют интегральной функцией распределения.

Важной особенностью является тот факт, что функция распределения ЛЮБОЙ непрерывной случайной величины всегда и всюду непрерывна! Часто её можно встретить в кусочном виде, например:

однако в точках «стыка» всё хорошо:

и если там разрыв, то вы имеете дело с опечаткой или откровенной ошибкой!

! Но сама по себе непрерывность и ноль слева, единица справа – ещё не означают, что перед нами функция распределения.

При ручном построении чертежа целесообразно найти опорные точки; в нашем примере удобно взять: и плавно-плавно провести карандашом кусочек параболы :

Напоминаю, что левый нижний луч следует прочертить жирно (чтобы он не сливался с осью), а правый верхний луч продолжить за остриё оси (т.к. график бесконечен). Также не забываем, что не может убывать, и если вдруг окажется, что какой-то кусок графика идёт «сверху вниз», то ищите ошибку или опять же – имеет место опечатка. А может просто дрогнула рука :)

Что касаемо масштаба, то смотрим по ситуации, чаще всего оптимальный масштаб составляет 1 ед. = 1 см (две клетки), но поскольку я строю графики не от руки, то особо не слежу за пропорциями – в данном случае по оси ординат вышло примерно в 2 раза больше, чем по оси абсцисс.

Теперь вернёмся к смыслу функции распределения и рассмотрим пару конкретных «икс»:

– вероятность того, что случайная величина примет значение, МЕНЬШЕЕ, чем –1;

– вероятность того, что случайная величина примет значение, МЕНЬШЕЕ, чем 4.

Ну, и очевидно, что рассматриваемая случайная величина принимает случайные, наперёд неизвестные значения из отрезка . Если вкладывать в задачу содержательный смысл, то это может быть случайная продолжительность некоего процесса (в секундах, например), или масса либо размер случайно выбранного объекта (например, крупинки песка). И тому подобное – примеров масса. Конкретные задачи непременно будут, но прежде остановимся на технической стороне вопроса.

Вероятность того, что случайная величина примет значение из некоторого промежутка рассчитывается ещё проще, чем для дискретной случайной величины. Здесь нет никакой Санта-Барбары: отрезок ли нам дан, полуинтервал или интервал , соответствующую вероятность можно вычислить по единой формуле:

Примечание: в следующем параграфе мы обоснуем это утверждение

Например:
– вероятность того, что случайная величина примет значение из отрезка . И точно такими же будут вероятности ;

– вероятность того, что случайная величина примет значение из отрезка ;

– вероятность того, что случайная величина примет значение из интервала ;

Наверное, вы подметили, что на участках одинаковой длины результаты получились разными: . И возникает вопрос: как оценить эту «концентрацию» вероятностей на различных промежутках? – ведь функция распределения характеризует накопление вероятностей по мере увеличения , и много раз вычислять что-то неохота.

Эффективный ответ на поставленный вопрос даёт

функция ПЛОТНОСТИ распределения вероятностей

или дифференциальная функция распределения. Она представляет собой производную функции распределения: .

Примечание: для дискретной случайной величины такой функции не существует

В нашем примере:

То есть, всё очень просто – берём производную от каждого куска, и порядок.

Но настоящий порядок состоит в том, что несобственный интеграл от с пределами интегрирования от «минус» до «плюс» бесконечности:
– равен единице, и строго единице. В противном случае перед нами не функция плотности, и если эта функция найдена как производная, то – не является функцией распределения (несмотря на какие бы то ни было другие признаки).

Проверим «подлинность» наших функций. Если случайная величина принимает значения из конечного промежутка, то всё дело сводится к вычислению определённого интеграла. В силу свойства аддитивности:

Совершенно понятно, что левый и правый интегралы равны нулю и нам осталось вычислить:
, что и требовалось проверить. С вероятностной точки зрения это означает, что случайная величина достоверно примет одно из значений отрезка . Геометрически же это означает, что площадь между осью и графиком равна единице, в данном случае речь идёт о площади треугольника . Сторона является фрагментом прямой и для её построения достаточно найти точку :

Ну вот, стало всё наглядно – где бОльшая площадь, там и более вероятные значения. Так как функция плотности «собирает под собой» вероятности, то она тоже неотрицательна и её график не может располагаться ниже оси . Следует также отметить, что в общем случае эта функция разрывна (следим, где «жирные» точки!).

Теперь разберём весьма любопытный факт: поскольку действительных чисел несчётно много, то вероятность того, что случайная величина примет какое-то конкретное значение стремится к нулю. И поэтому вероятности рассчитывают не для отдельно взятых точек, а для целых промежутков (пусть даже очень малых). Как вы правильно догадались:
(синяя площадь на чертеже) – вероятность того, что случайная величина примет значение из отрезка ;

(красная площадь) – вероятность того, что случайная величина примет значение из отрезка .

По той причине, что отдельно взятые значения можно не принимать во внимание, с помощью этих же интегралов рассчитываются и вероятности по интервалам / полуинтервалам, в частности:

Этим же объяснятся аналогичная «вольность» с функцией .

Возможно, кто-то спросит: а зачем считать интегралы, если есть функция ?

А дело в том, что во многих задачах непрерывная случайная величина ИЗНАЧАЛЬНО задана функцией плотности распределения, которая ТОЖЕ однозначно определяет случайную величину. Но, как вариант, можно сначала найти функцию (с помощью тех же интегралов), после чего использовать «лёгкий способ» бросить курить отыскания вероятностей. Впрочем, об этом чуть позже:

Непрерывная случайная величина задана своей функцией распределения:

Найти значения и функцию . Проверить, что действительно является функцией плотности распределения. Вычислить вероятности . Построить графики .

Тренируемся самостоятельно! Если возникнут затруднения, то внимательно перечитайте вышеизложенный материал. Краткое решение и ответ в конце урока.

Вообще, типовые задачи на непрерывную случайную величину можно разделить на 2 большие группы: 1) когда дана функция , 2) когда дана функция .

В первом случае не составляет никаких трудностей отыскать функцию плотности распределения – почти всегда производные не то что простЫ, а примитивны (в чём мы недавно убедились). Но вот когда НСВ задана функцией , то нахождение функции распределения – есть более кропотливый процесс:

Непрерывная случайная величина задана функцией плотности распределения:

Найти значение и составить функцию распределения вероятностей. Вычислить . Построить графики .

Решение: найдём константу . Это классика. В подавляющем большинстве задач вам не предложат готовую функцию плотности. Используем свойство . В данном случае:

На практике нулевые интегралы можно опускать, а константу сразу выносить за знак интеграла:

Пользуясь чётностью подынтегральной функции, вычислим:
и подставим результат в уравнение:
, откуда выразим

Таким образом, функция плотности распределения:

Выполним проверку, а именно, вычислим тот же самый интеграл, но уже с известной константой. Для разнообразия я не буду пользоваться чётностью:
, что и требовалось проверить.

Обратите внимание, что только при – и только при этом значении, предложенная в условии функция является функцией плотности распределения. Ну и тут не лишним будет проконтролировать, что на интервале , т.е. условие неотрицательности выполнено. Доверяй условию, да проверяй ;) Не раз и не два мне встречались функции, которые в принципе не могли быть плотностью, что говорило об опечатках или о невнимательности авторов задач.

Теперь начинается самое интересное. Функция распределения вероятностей – есть интеграл:

Так как наша состоит из трёх кусков, то решение разобьётся на 3 шага:

1) На промежутке , поэтому:

2) На интервале , и мы прицепляем следующий вагончик:

При подстановке верхнего предела интегрирования можно считать, что вместо «икс» мы подставляем «икс». Если же возник вопрос с пределом нижним, то вспоминаем график синусоиды или нечётность синуса с тригонометрической таблицей.

3) И, наконец, на , и детский паровозик отправляется в путь:

! А вот в этом задании нулевые интегралы пропускать НЕ НАДО. Чтобы показать своё понимание функции распределения ;) К тому же, они могут оказаться вовсе не нулевыми, и тогда придётся иметь дело с интегралами несобственными. Соответствующие примеры я обязательно разберу ниже.

Записываем наши достижения под единую скобку:

С высокой вероятностью всё правильно, но, тем не менее, устно возьмём производную , а также «прозвоним» точки «стыка»:

Правильность решения можно проконтролировать и в ходе построения графика, но, во-первых, он не всегда требуется, а во-вторых, до сего момента можно успеть «наломать дров». Ибо вероятности попадания в интервал чаще находят с помощью функции распределения:

– вероятность того, что случайная величина примет значение из промежутка

Но ценители интегрального исчисления, конечно же, не откажут себе в удовольствии:
, что, кстати, не труднее. И проверочка заодно получилась.

Выполним чертежи. График представляет собой косинусоиду, сжатую вдоль ординат в 2 раза:

Тот редкий случай, когда функция плотности непрерывна.

Значение численно равно заштрихованной площади – это я специально сделал, чтобы напомнить вероятностный смысл функции плотности. И вся площадь под «дугой» равна единице, то есть, достоверным является тот факт, что случайная величина примет значение из интервала . Заметьте, что значения , согласно условию, невозможны.

Осталось изобразить функцию распределения. График представляет собой сжатую в 2 раза вдоль оси ординат синусоиду, сдвинутую на вверх:

В принципе, тут можно не заморачиваться преобразованием графиков, а найти несколько опорных точек и догадаться, как выглядит кривая (тригонометрическая таблица в помощь). Но «любительский» подход чреват тем, что график получится принципиально не точным. Так, в нашем примере в точке существует перегиб графика, и велик риск неверно отобразить его выпуклость / вогнутость.

Чертежи желательно расположить так, чтобы оси ординат лежали ровненько одна под другой. Это будет хорошим тоном.

И я так чувствую, вам уже не терпится проверить свои силы. Как водится, пример попроще:

Задана плотность распределения вероятностей непрерывной случайной величины :

Требуется:
1) определить коэффициент ;
2) найти функцию распределения ;
3) построить графики ;
4) найти вероятность того, что примет значение из промежутка

и задачка поинтереснее:

Непрерывная случайная величина задана плотностью распределения вероятностей:

Найти значение и построить график плотности распределения. Найти функцию распределения вероятностей и построить её график. Вычислить вероятность .

Дерзайте! Свериться с решением можно внизу страницы.

И в заключение 1-й части урока обещанные случаи с несобственными интегралами:

Непрерывная случайная величина задана своей плотностью распределения:

Найти коэффициент и функцию распределения . Построить графики.

Решение: по свойству функции плотности распределения:

В данной задаче состоит из 2 частей, поэтому:

Правый интеграл равен нулю, а вот левый – есть «живой» несобственный интеграл с бесконечным нижним пределом:

Таким образом, наше уравнение превратилось в готовый результат:


и функция плотности:

Функция , как нетрудно понять, отыскивается в 2 шага:

1) На промежутке , следовательно:
– вот такая вот у нас замечательная экспонента. Как птица Феникс.

2) На интервале и:
, что и должно получиться.

Для построения графиков найдём пару опорных точек: и аккуратно прочертим кусочки экспонент с причитающимися дополнениями:

Заметьте, что теоретически случайная величина может принять сколь угодно большое по модулю отрицательное значение, и ось абсцисс является горизонтальной асимптотой для обоих графиков при .

Ещё более интересное задание для самостоятельного изучения:

Проверить, что является функцией плотности распределения вероятностей непрерывной случайной величины. Найти и выполнить чертежи.

Здесь случайная величина теоретически принимает вообще ВСЕ действительные значения, т.к. определена при любом «икс». В ходе проверки на плотность удобно использовать чётность подынтегральной функции в несобственном интеграле, а для нахождения самого интеграла нужно представить и избавиться от трёхэтажности дроби. Самостоятельно выясните, как будут выглядеть графики – статья об асимптотах в помощь.

Жду вас во 2-й части урока, посвящённой числовым характеристикам НСВ. Постарайтесь освоить её как можно скорее – по «горячим» знаниям и навыкам!

Решения и ответы:

Пример 1. Решение: в силу непрерывности функции распределения:

Таким образом:

Найдём функцию плотности распределения:

Покажем, что действительно является функцией плотности:
1) Для любого значения , в частности, на среднем промежутке:
Внимание! Без 1-го пункта обойтись нельзя!
2)
Таким образом, найденная функция действительно является функцией плотности распределения.

Требуемые вероятности выгоднее вычислить с помощью функции распределения:
– вероятность того, что случайная величина примет значение из полуинтервала ;

– вероятность того, что случайная величина примет значение, больше, чем .

Построим графики :

Пример 3. Решение:
1) По свойству функции плотности распределения:

В данной задаче:

Таким образом, искомая плотность:

2) Функцию распределения найдём с помощью формулы :
– если то и ;
– если то и ;
– если то и:
.
Таким образом:

3) Выполним чертежи:

4) Найдём вероятность того, что случайная величина примет значение из промежутка :

Пример 4. Решение: функция плотности распределения вероятности обладает свойством . В данном случае:

Таким образом, функция плотности распределения:

Выполним чертеж:

Составим функцию распределения вероятностей :
1) Если , то и
2) Если , то и
3) Если , то и:

4) Если , то и:

Таким образом:
,
Выполним чертеж:

Вычислим – вероятность того, что случайная величина примет значение из интервала .

Пример 6. Решение: проверим, что функция является функцией плотности:
1) Поскольку экспоненциальная функция положительна, то для любого , значит, свойство неотрицательности функции плотности выполнено.
2) Проверим выполнение свойства . Сначала удобно найти неопределённый интеграл:
.
Используем чётность подынтегральной функции:

Вывод: является функцией плотности распределения вероятностей непрерывной случайной величины, что и требовалось проверить.

Найдём функцию распределения:

– для всех .

Выполним чертёжи:

! Обратите внимание, что у 1-го графика одна, а 2-го – две горизонтальные асимптоты, «залезать» за которые нельзя!

Автор: Емелин Александр

(Переход на главную страницу)

«Всё сдал!» — онлайн-сервис помощи студентам

1. Формирование представление о случайной величине, дискретных и непрерывных случайных величинах.

2. Знакомство с законом распределения дискретной случайной величины, функцией распределения и плотностью распределения непрерывной случайной величины, числовых характеристиках случайных величин.

1. Виды случайных величин.

2. Закон распределения дискретной случайной величины.

3. Функция распределения вероятностей случайной величины.

4. Плотность распределения вероятностей непрерывной случайной величины.

5. Математическое ожидание.

6. Дисперсия и среднеквадратическое отклонение.

1. Виды случайных величин.

Случайной величиной называется такая величина, которая случайно принимает какое-то значение из множества возможных значений.

Случайные величины обозначаются: X , Y , Z . Значения, которые они принимают: x , y , z .

По множеству возможных значений различают дискретные и непрерывные случайные величины.

Дискретными называются случайные величины, значениями которых являются только отдельные точки числовой оси. (Число их может быть как конечно, так и бесконечно).

Пример: Число родившихся девочек среди ста новорожденных за последний месяц- это дискретная случайная величина, которая может принимать значения 1,2,3,…

Непрерывными называются случайные величины, которые могут принимать все значения из некоторого числового промежутка.

Пример: Расстояние, которое пролетит снаряд при выстреле- это непрерывная случайная величина, значения которой принадлежат некоторому промежутку [а; в].

2. Закон распределения дискретной случайной величины.

Дискретную случайную величину Х можно характеризовать законом распределения .

Закон распределения дискретной случайной величины- это соответствие между возможными значениями случайной величины и их вероятностями.

Закон распределения можно задать таблично, аналитически, графически.

При задании закона распределения таблично, в первую строку таблицы вносятся возможные значения случайно величины, а во вторую- их вероятности.

Пример: Монету подбросили 3 раза. Запишите закон распределения числа выпадения «герба».

Возможные значения данной случайной величины: 0, 1, 2, 3.

Найдем вероятность того, что «герб» не появится (0 раз).

Найдем вероятность того, что «герб» появится 1 раз.

Найдем вероятность того, что «герб» появится 2 раза.

Найдем вероятность того, что «герб» появится 3 раза.

Тогда закон распределения данной дискретной случайной величины можно представить таблицей:

Для наглядности закон распределения дискретной случайной величины можно изобразить графически, для чего в прямоугольной системе координат строят точки с координатами (xi ; pi), а затем соединяют их отрезками прямых. Полученная фигура называется многоугольником распределения.

Однако, такой способ задания (перечисление всех возможных значений случайной величины и их вероятностей) не подходит для непрерывных случайных величин. Составить перечень их возможных значений невозможно.

3. Функция распределения вероятностей случайной величины.

Дадим новый способ задания любых типов случайных величин. С этой целью введем функцию распределения вероятностей случайной величины.

Функцией распределения случайной величины называют функцию F ( x ), определяющую вероятность того, что случайная величина Х в результате испытания примет значение меньшее х, т.е. F ( x )< P ( X < x ).

Геометрически это равенство можно истолковать так: F ( x ) –есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Иногда вместо термина «функция распределения» используется термин «интегральная функция».

Свойства функции распределения:

Свойство 1: Значения функции распределения принадлежат интервалу [0; 1]: .

Свойство 2: F ( x )- неубывающая функция, т.е. при .

Следствие 1: Вероятность того, что случайная величина примет значение, заключенное в интервале (а; b ), равна приращению функции распределения на этом интервале:

Пример: Случайная величина Х задана функцией распределения:

Найдите вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0; 2).

Следствие 2:

Свойство 3: Если возможные значения случайной величины принадлежат интервалу ( a ; b ), то F ( x )=0 при (т.к. ; F ( x )=1 при (т.к. - достоверное событие.

Следствие: Если возможные значения непрерывной случайной величины распределены на всей числовой оси, то справедливы следующие предельные соотношения:

Рассмотренные выше свойства позволяют представить, как выглядит график функции распределения непрерывной случайной величины.

График расположен в полосе, ограниченной прямыми у=0, у=1 (1 свойство).

4. При возрастании значения х в интервале ( a ; b ), в котором заключены все возможные значения случайной величины, график растет вверх (2 свойство).

5. При ординаты графика равны 0, при ординаты графика равны 1 (3 свойство).

Замечание: График функции распределения дискретной случайной величины имеет ступенчатый вид.

Пример: Дискретная случайная величина Х задана таблицей распределения:

Найдите функцию распределения и постройте ее график.

Итак, функция распределения имеет следующий вид:

4. Плотность распределения вероятностей непрерывной случайной величины.

Непрерывную случайную величину можно также задать, используя другую функцию, которую называют плотностью распределения или плотностью вероятности (дифференциальной функцией).

Плотность распределения вероятностей непрерывной случайной величины Х называют функцию f ( x )- первую производную от функции распределения F ( x ).

Теорема: Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащее интервалу ( a ; b ), равна определенному интегралу от плотности распределения, взятому в пределах от а до b .

Пример: Задана плотность вероятностей случайной величины Х.

Найдите вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0,5; 1).

Свойства плотности распределения вероятностей:

Свойство 1: Плотность распределения- неотрицательная функция: f ( x ) > 0.

Свойство 2: Несобственный интеграл от плотности распределения в пределах от равен 1: .

Геометрический смысл этого свойства заключается в следующем: площадь криволинейной трапеции, ограниченной осью ОХ и кривой распределения, равна 1. В частности, если все возможные значения случайной величины принадлежат интервалу ( a ; b ), то .

Часто, для того чтобы характеризовать случайную величину используют числа, которые описывают случайную величину суммарно. Такие числа называются числовыми характеристиками случайной величины. К числу важнейших числовых характеристик относятся математическое ожидание и дисперсия.

5. Математическое ожидание.

Математическое ожидание приближенно равно среднему значению случайной величины. Например, если известно, что математическое ожидание числа выбиваемых очков у первого стрелка больше, чем у второго, то первый стрелок в среднем выбивает больше очков, чем второй, и следовательно стреляет лучше.

Математическое ожидание дискретной случайной величины Х- это величина , где xi- значения случайной величины, pi- их вероятности, n - число возможных значений случайной величины.

Пример: Найдите математическое ожидание, зная закон распределения дискретной случайной величины.

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!

Основные понятия

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.


Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.

Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.

Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:

    Дискретная случайная величина — величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, то есть образовывать счетное множество.

Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.

Вероятностное пространство — это тройка (Ω, Σ, Ρ) иногда обрамленная угловыми скобками: ⟨ , ⟩ , где

  • Ω — это множество объектов, которые называют элементарными событиями, исходами или точками.
  • Σ — сигма-алгебра подмножеств , называемых случайными событиями;
  • Ρ — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .

Формулы по теории вероятности

Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.

Случайные события. Основные формулы комбинаторики


Классическое определение вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A

  • Вероятность достоверного события равна единице.
  • Вероятность невозможного события равна нулю.
  • Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Таким образом, вероятность любого события удовлетворяет двойному неравенству:

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

Геометрическое определение вероятности

Геометрическая вероятность события А определяется отношением:

P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно

Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.

Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?

  1. A — встреча с другом состоится, х и у — время прихода. Значит:
    0 ≤ х, у ≤ 60.
  2. В прямоугольной системе координат этому условию удовлетворяют точки, которые лежат внутри квадрата ОАВС. Друзья встретятся, если между моментами их прихода пройдет не более 5 минут, то есть:

У нас есть отличное онлайн обучение по математике для учеников с 1 по 11 классы, записывайся на пробное занятие!

Сложение и умножение вероятностей

  • Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В можно записать так: A ⊂ B.
  • События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается так: А = В.
  • Суммой событий А и В называется событие А + В, которое наступает тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

P(A + B) = P(A) + P(B)

Эта теорема справедлива для любого числа несовместных событий:


Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:

  • P(A1) + P(A2) + … + P(An) = 1. Такие события (гипотезы) используют при решении задач на полную вероятность.

Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:

P(A + B) = P(A) + P(B) − P(AB)

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:

P(AB) = P(A) * P(B)

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.

Найдем вероятности того, что формула содержится:

  1. только в одном справочнике;
  2. только в двух справочниках;
  3. во всех трех справочниках.

А — формула содержится в первом справочнике;

В — формула содержится во втором справочнике;

С — формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.

Формула полной вероятности и формула Байеса

Если событие А может произойти только при выполнении одного из событий B1, B2, . Bn, которые образуют полную группу несовместных событий — вероятность события А вычисляется по формуле полной вероятности:

Вновь рассмотрим полную группу несовместных событий B1, B2, . Bn, вероятности появления которых P(B1), P(B2), . P(Bn). Событие А может произойти только вместе с каким-либо из событий B1, B2, . Bn, которые называются гипотезами. Тогда по формуле полной вероятности: если событие А произошло — это может изменить вероятности гипотез P(B1), P(B2), . P(Bn).

По теореме умножения вероятностей:

Аналогично, для остальных гипотез:

Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.

Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

  1. Возможны три гипотезы:
    • А1 — на линию огня вызван первый стрелок,
    • А2 — на линию огня вызван второй стрелок,
    • А3 — на линию огня вызван третий стрелок.

  2. Так как вызов на линию огня любого стрелка равно возможен, то

  3. В результате опыта наблюдалось событие В — после произведенных выстрелов мишень не поражена. Условные вероятности этого события при наших гипотезах равны:

  4. По формуле Байеса находим вероятность гипотезы А1 после опыта:

Формула Бернулли

При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

  • Бросаем игральный кубик, где вероятности выпадения определенной цифры одинаковы в каждом броске.
  • Включаем лампы с заранее заданной одинаковой вероятностью выхода из строя каждой.
  • Лучник повторяет выстрелы по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой.

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.

    Обозначим вероятность появления события А в единичном испытании буквой р, значит:

p = P(A), а вероятность противоположного события (событие А не наступило) - буквой q

Биномиальное распределение — распределение числа успехов (появлений события).

Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.

Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:

Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂

Наивероятнейшее число успехов

Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:

np - q ≤ k ≤ np + p, где q=1−p

Так как np−q = np + p−1, то эти границы отличаются на 1. Поэтому k, являющееся целым числом, может принимать либо одно значение, когда np целое число (k = np), то есть когда np + p (а отсюда и np - q) нецелое число, либо два значения, когда np - q целое число.

Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.

  1. По условию дано: n = 730, p = 1/365, g = 364/365
  2. np - g = 366/365
  3. np + p = 731/365
  4. 366/365 ≤ m ≤ 731/365
  5. m = 2

Формула Пуассона

При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.

В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:

Здесь λ = np обозначает среднее число появлений события в n испытаниях.

Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.

События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).

При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.

Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

  1. По условию дано: n = 1000, p = 0,002, λ = np = 2, k = 3.
  2. Искомая вероятность после подстановки в формулу:

P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.

Ответ: ориентировочно 0,18.

Теоремы Муавра-Лапласа

Пусть в каждом из n независимых испытаний событие A может произойти с вероятностью p, q = 1 - p (условия схемы Бернулли). Обозначим как и раньше, через Pn(k) вероятность ровно k появлений события А в n испытаниях.

Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.

Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то

Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то

Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:

  • при больших x верно

Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.

Читайте также: