Выражение в кубе 2 плюс 2
Обновлено: 22.12.2024
Куб суммы двух выражений равен кубу первого выражения, плюс утроенное произведение квадрата первого выражения на второе выражение, плюс утроенное произведение первого выражения на квадрат второго выражения, плюс куб второго выражения.
Вместо a и b в формуле могут быть любые одночлены (и даже многочлены), которые нужно подставить. Например:
Формула куба разности
Возведем в куб разность (a-b):
$$ = a(a^2-2ab+b^2 )-b(a^2-2ab+b^2 ) = a^3-2a^2 b+ab^2-a^2 b+2ab^2-b^3 = $$
Мы получили формулу куба разности двух выражений:
Куб разности двух выражений равен кубу первого выражения, минус утроенное произведение квадрата первого выражения на второе выражение, плюс утроенное произведение первого выражения на квадрат второго выражения, минус куб второго выражения.
Вместо a и b в формуле могут быть любые одночлены (и даже многочлены), которые нужно подставить. Например:
Не забывайте о втором и третьем слагаемом в формулах куба двучленов!
Не путайте знаки «+» и «-» перед слагаемыми!
Неправильно: $ (a+b)^3$ ≠ $a^3+b^3$ или $(a-b)^3$ ≠ $a^3-b^3$
Правильно: $(a+b)^3 = a^3+$ $3a^2b+3ab^2$ $+b^3$ и
$(a-b)^3 = a^3 $ $-3a^2 b+3ab^2-$ $b^3 $
Примеры
Пример 1. Представьте в виде многочлена
б) $ (9-z)^3 = 9^3-3\cdot9^2\cdot z+3\cdot9\cdot z^2-z^3 = 729-243+27z^2-z^3 $
в) $(5b-3c)^3 = (5b)^3-3\cdot(5b)^2\cdot3c+3\cdot5b\cdot(3c)^2-(3c)^3 =$
г) $(2mk+1)^3 = (2mk)^3+3\cdot(2mk)^2\cdot1+3\cdot2mk\cdot1^2+1^3 =$
$ = 8m^3 k^3+12m^2 k^2+6mk+1 $
Пример 2. Упростите выражение:
а) $(a+2)^3-(a-2)^3 = a^3+3a^2\cdot2+3a\cdot2^2+2^3-(a^3-3a^2\cdot2+3a\cdot2^2-2^3 )= $
б) $(x-3y)^3+9xy(x-3y) = x^3-3x^2\cdot3y+3x\cdot(3y)^2-27y^3+9x^2 y-27xy^2 =$
в) $(x+y)^3-x(x-y)^2 = x^3-3x^2 y+3xy^2+y^3-x(x^2-2xy+y^2 ) =$
$= x^3-3x^2 y+3xy^2+y^3-x^3+2x^2 y-xy^2 = -x^2 y+2xy^2+y^3$
г) $3m(k+3m)^2-(k+3m)^3 = 3m(k^2+6km+9m^2 )-$
$-(k^3+3k^2\cdot3m+3k\cdot(3m)^2+(3m)^3 ) = 3k^2 m+18km^2+27m^3- $
$-k^3-9k^2 m-27km^2-27m^3 = -6k^2 m-9km^2-k^3 $
Пример 3. Найдите значение выражения:
a) $a^3-b^3-3ab(a-b)$ при a = -7 и b = -17
$a^3-b^3-3ab(a-b) = a^3-b^3-3a^2 b+3ab^2 = a^3-3a^2 b+3ab^2-b^3 =$
Подставляем: $(-7-(-17) )^3 = 10^3 = 1000$
б) $3ab(a+b)+a^3+b^3$ при a = -3 и b = 13
$ 3ab(a+b)+a^3+b^3 = 3a^2 b+3ab^2+a^3+b^3 = a^3+3a^2 b+3ab^2+b^3 = $
Подставляем: $(-3+13)^3 = 10^3 = 1000$
Пример 4. Решите уравнение:
а) $(3x+1)^3 = 27x^2 (x+1)$
б) $(1-4x)^3+48x^2 (1 \frac x-1) = 0$
$1-3\cdot4x+3\cdot(4x)^2-(4x)^3+48\cdot \frac x^3-48x^2 = 0 $
Пример 5*. Дайте геометрическое объяснение формуле куба суммы (аналогично квадрату суммы – см. §21 данного справочника, но для кубов в пространстве).
Рассмотрим куб со стороной (a+b) и вписанный в один из его углов куб со стороной b.
Объемы кубов $V_ = (a+b)^3,V_b = b^3$ Объем прямоугольного параллелепипеда, закрашенного оранжевым цветом: $V_ = a(a+b)^2$
Объем прямоугольного параллелепипеда, закрашенного синим: $V_ = b(a+b)^2$
Читайте также: