Выражение определяющее скорость при равноускоренном прямолинейном движении
Обновлено: 05.11.2024
Равноускоренное движение - это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение - частный случай равноускоренного движения с ускорением, равным нулю.
Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.
В любой точке траектории на тело действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.
Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y - равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.
Формулы для равноускоренного движения
Формула для скорости при равноускоренном движении:
Здесь v 0 - начальная скорость тела, a = c o n s t - ускорение.
Покажем на графике, что при равноускоренном движении зависимость v ( t ) имеет вид прямой линии.
Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.
a = v - v 0 t = B C A C
Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.
Для первого графика: v 0 = - 2 м с ; a = 0 , 5 м с 2 .
Для второго графика: v 0 = 3 м с ; a = - 1 3 м с 2 .
Нужна помощь преподавателя? Опиши задание — и наши эксперты тебе помогут! Описать заданиеПо данному графику можно также вычислить перемещение тела за время t . Как это сделать?
Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .
Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .
s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + ( v - v 0 ) 2 t .
Мы знаем, что v - v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:
s = v 0 t + a t 2 2
Для того, чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты в зависимости от времени выражает закон равноускоренного движения.
Закон равноускоренного движения
Закон равноускоренного движенияy = y 0 + v 0 t + a t 2 2 .
Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения - нахождение координаты при заданных значениях начальной и конечной скоростей и ускорения.
Исключая из записанных выше уравнений t и решая их, получаем:
s = v 2 - v 0 2 2 a .
По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:
v = v 0 2 + 2 a s .
При v 0 = 0 s = v 2 2 a и v = 2 a s
Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.
Читайте также: