В высказывании а п чехова в детстве у меня не было детства противоречие

Обновлено: 22.12.2024

Например, известное высказывание А. П. Чехова: В детстве у меня не было детства кажется противоречивым, т. к. оно вроде бы подразумевает одновременную истинность двух суждений, одно из которых отрицает другое: У меня было детство и У меня не было детства. Таким образом, можно предположить, что противоречие в данном высказывании не просто присутствует, но и является наиболее грубым – контактным и явным. На самом же деле никакого противоречия в чеховской фразе нет. Вспомним, закон противоречия нарушается только тогда, когда речь идет об одном и том же предмете, в одно и то же время и в одном и том же отношении. В рассматриваемом высказывании речь идет о двух разных предметах: термин детство употребляется в различных значениях – детство как определенный возраст и детство как состояние души, пора счастья и безмятежия. Хотя и безо всех этих теоретических комментариев, скорее всего, вполне понятно, что хотел сказать А. П. Чехов в этих своих словах. Обратим внимание на то, что кажущееся противоречие использовано им, по всей видимости, преднамеренно, для достижения большего художественного эффекта. И действительно, благодаря ненастоящему противоречию, чеховское суждение является ярким и запоминающимся, представляет собой удачный афоризм. Как видим, мнимое противоречие вполне может быть художественным приемом. Достаточно вспомнить названия многих известных литературных произведений: "Живой труп" (Л. Н. Толстой), "Мещанин во дворянстве" (Ж. Б. Мольер), "Барышня-крестьянка" (А. С. Пушкин), "Горячий снег" (Ю. В. Бондарев) и др. Иногда на мнимом противоречии строится заголовок газетной или журнальной статьи: "Знакомые незнакомцы", "Древняя новизна", "Необходимая случайность" и т. п.

4.5. Закон исключенного третьего

Рассматривая отношения между понятиями в первой главе (см. 1.5.), мы обращали внимание на отличие противоположных понятий (например, высокий человек и низкий человек) от противоречащих (например, высокий человек и невысокий человек).

Суждения также бывают противоположными и противоречащими. Например, суждения: Сократ высокий и Сократ низкий являются противоположными, а суждения: Сократ высокий и Сократ невысокий – противоречащими. В чем заключается разница между противоположными и противоречащими суждениями? Нетрудно заметить, что противоположные суждения всегда предполагают некий третий, средний, промежуточный вариант. Для суждений: Сократ высокий и Сократ низкий третьим вариантом будет суждение: Сократ среднего роста. Противоречащие суждения, в отличие от противоположных, не допускают, или автоматически исключают такой промежуточный вариант. Как бы мы не пытались, мы не сможем найти никакого третьего варианта для суждений: Сократ высокий и Сократ невысокий (ведь и низкий, и среднего роста – это все невысокий). Именно в силу наличия третьего варианта противоположные суждения могут быть одновременно ложными. Если суждение: Сократ среднего роста является истинным, то противоположные суждения: Сократ высокий и Сократ низкий одновременно ложны. Точно так же именно в силу отсутствия третьего варианта противоречащие суждения не могут быть одновременно ложными. Таково различие между противоположными и противоречащими суждениями. Сходство между ними заключается в том, что и противоположные суждения, и противоречащие не могут быть одновременно истинными, как того требует закон противоречия. Таким образом, этот закон распространяется и на противоположные суждения, и на противоречащие. Однако, как мы помним, закон противоречия запрещает одновременную истинность двух суждений, но не запрещает их одновременную ложность; а противоречащие суждения не могут быть одновременно ложными, т. е. закон противоречия является для них недостаточным и нуждается в каком-то дополнении. Поэтому для противоречащих суждений существует закон исключенного третьего, который говорит о том, что два противоречащих суждения об одном и том же предмете, в одно и то же время и в одном и том же отношении не могут быть одновременно истинными и не могут быть одновременно ложными (истинность одного из них обязательно означает ложность другого и наоборот). Символическая запись закона исключенного третьего представляет собой следующую тождественно-истинную формулу: а ⊻ а (читается – а или не а), где а – это какое-либо высказывание.

Как видим, закон исключенного третьего очень близок к закону противоречия. Наличие в логике двух очень похожих друг на друга законов – противоречия и исключенного третьего, – обусловлено, как нетрудно заметить, принципиальным различием между противоположными и противоречащими суждениями, одни из которых предполагают третий вариант, а другие исключают его (точно так же, как и противоположные и противоречащие понятия).

4.6. Закон достаточного основания

Каждый из нас хорошо знает, что к любому утверждению можно относиться с доверием только тогда, когда оно подкреплено (в большей или меньшей степени, прямо или косвенно, в той или иной форме) какими-либо другими утверждениями, причем ранее доказанными и потому несомненными, которые мы обычно называем аргументами. Ничем не подкрепленные и ни на чем не основывающиеся утверждения мы, как правило, называем "голословными", т. е. не заслуживающими доверия и серьезного отношения. Требование, по которому любое утверждение должно базироваться на каких-то аргументах и иметь доказательную силу, представляет собой один из основных законов логики – закон достаточного основания. Этот закон утверждает, что любая мысль (тезис) для того, чтобы иметь силу, обязательно должна быть доказана (обоснована) какими-либо аргументами (основаниями), причем эти аргументы должны быть достаточными для доказательства исходной мысли, т. е. она должна вытекать из них с необходимостью (тезис должен с необходимостью следовать из оснований).

Приведем несколько примеров. В рассуждении: Конечно же это вещество является электропроводным (тезис), потому что оно – металл (основание) – закон достаточного основания не нарушен, так как в данном случае из основания с необходимостью следует тезис (из того, что вещество металл, с необходимостью вытекает, что оно электропроводно). А в рассуждении: Сегодня взлетная полоса покрыта льдом (тезис), ведь самолеты сегодня не могут взлететь (основание) – рассматриваемый закон нарушен, тезис не вытекает из основания с необходимостью (из того, что самолеты не могут взлететь, не вытекает с необходимостью, что взлетная полоса покрыта льдом, ведь самолеты могут не взлететь и по другой причине). Так же нарушается закон достаточного основания в ситуации, когда студент говорит преподавателю на экзамене: "Не ставьте мне двойку, спросите еще (тезис), я же прочитал весь учебник, может быть и отвечу что-нибудь" (основание). В этом случае тезис не вытекает из основания с необходимостью: студент мог прочитать весь учебник, но из этого однозначно не следует, что он сможет что-то ответить (так как он вполне мог забыть все прочитанное или ничего в нем не понять и т. п.)

В рассуждении: Преступление совершил Н. (тезис), ведь он сам признался в этом и собственноручно подписал все показания (основание) – закон достаточного основания, конечно же, нарушен, потому что из того, что человек признался в совершении преступления, не вытекает с достоверностью, что он действительно его совершил. "Признаться", как известно, можно в чем угодно под давлением различных обстоятельств (в чем только не "признавались" люди в застенках средневековой инквизиции, в чем только не "признаются" в кабинетах современных силовых ведомств, а также запросто "признаются" в чем угодно на страницах бульварной прессы, в различных телевизионных ток-шоу и т. п.) Таким образом, на законе достаточного основания базируется важный юридический принцип презумпции невиновности, который предписывает считать человека невиновным, даже если он дает показания против себя, до тех пор, пока его вина не будет достоверно доказана какими-либо фактами.

4.7. Чем отличается наука от псевдонауки?

Закон достаточного основания, требуя от любого рассуждения доказательной силы, предостерегает нас от поспешных выводов, голословных утверждений, дешевых сенсаций, мистификаций, слухов, сплетен и небылиц. Запрещая принимать что-либо только на веру, этот закон выступает надежной преградой для любого интеллектуального мошенничества. Не случайно он является одним из главных принципов науки (в отличие от псевдонауки или лженауки).

Читайте также: