В какой операции выражение цель и выражение источник задают совместимые по структуре выражения
Обновлено: 04.11.2024
Реляционная алгебра как теоретический язык запросов по сравнению с реляционным исчислением более наглядно описывает выполняемые над отношениями действия.
Примером языка запросов, основанного на реляционной алгебре, является ISBL (Information System Base Language - базовый язык информационных систем). Языки запросов, построенные на основе реляционной алгебры, в современных СУБД широкого распространения не получили. Однако знакомство с ней полезно для понимания сути реляционных операций, выражаемых другими используемыми языками.
Вариант реляционной алгебры, предложенный Коддом, включает в себя следующие основные операции : объединение, разность (вычитание), пересечение, декартово (прямое) произведение (или произведение), выборка (селекция, ограничение), проекция, деление и соединение.
По справедливому замечанию Дейта, реляционная алгебра Кодда обладает несколькими недостатками. Во-первых, восемь перечисленных операций по охвату своих функций, с одной стороны, избыточны, так как минимально необходимый набор составляют пять операций: объединение, вычитание, произведение, проекция и выборка. Три другие операции (пересечение, соединение и деление) можно определить через пять минимально необходимых. Так, например, соединение - это проекция выборки произведения.
Во-вторых, этих восьми операций недостаточно для построения реальной СУБД на принципах реляционной алгебры. Требуются расширения, включающие операции: переименования атрибутов, образования новых вычисляемых атрибутов, вычисления итоговых функций, построения сложных алгебраических выражений, присвоения, сравнения и т. д.
Рассмотрим перечисленные операции более подробно, сначала - операции реляционной алгебры Кодда, а затем - дополнительные операции, введенные Дейтом.
Операции реляционной алгебры Кодда можно разделить на две группы: базовые теоретико-множественные и специальные реляционные . Первая группа операций включает в себя классические операции теории множеств: объединение, разность, пересечение и произведение. Вторая группа представляет собой развитие обычных теоретико-множественных операций в направлении к реальным задачам манипулирования данными, в ее состав входят следующие операции: проекция, селекция, деление и соединение.
Операции реляционной алгебры могут выполняться над одним отношением (например, проекция) или над двумя отношениями (например, объединение). В первом случае операция называется унарной, а во втором - бинарной. При выполнении бинарной операции участвующие в операциях отношения должны быть совместимы по структуре.
Совместимость структур отношений означает совместимость имен атрибутов и типов соответствующих доменов. Частным случаем совместимости является идентичность (совпадение). Для устранения конфликтов имен атрибутов в исходных отношениях (когда совпадение имен недопустимо), а также для построения произвольных имен атрибутов результирующего отношения применяется операция переименования атрибутов. Структура результирующего отношения по определенным правилам наследует свойства структур исходных отношений. В большинстве рассматриваемых бинарных реляционных операций будем считать, что заголовки исходных отношений идентичны, так как в этом случае не возникает проблем с заголовком результирующего отношения (в общем случае, заголовки могут не совпадать, тогда нужно оговаривать правила формирования заголовка отношения-результата).
Объединением двух совместимых отношений R1 и R2 одинаковой размерности (Rl UNION R2) является отношение R, содержащее все элементы исходных отношений (с исключением повторений).
Пример 1. Объединение отношений.
Пусть отношением Rl будет множество поставщиков из Лондона, а отношение R2 - множество поставщиков, которые поставляют деталь Р1. Тогда отношение R обозначает поставщиков, находящихся в Лондоне, или поставщиков, выпускающих деталь Р1, либо тех и других.
Читайте также: