Способы образования сложных высказываний

Обновлено: 04.11.2024

Сложные суждения образуются из простых двумя основными способами:

1) путем квантификации высказываний;

2) объединением простых или элементарных высказываний с помощью логических связок или операторов.

Первый способ представляет собой метод получения общих суждений путем использования логических кванторов, характеризующих объем суждения. Прежде чем перейти к его обсуждению, рассмотрим понятие функции-высказывания, которое играет важную роль в логике.

Высказывания в функции-высказывании оцениваются с точки зрения их истинностного значения, поэтому такая функция называется также истинностной функцией. Она образуется по аналогии с математической функцией, но в отличие от последней, аргументами в ней являются не числа и другие математические объекты, а логические объекты - высказывания. В связи с этим ее называют также пропозициональной функцией или - что менее благозвучно - высказывательной функцией. Значениями ее аргументов и самой функции являются "истина" и "ложь". Таким образом, здесь мы имеем дело с пропозициональной функцией двузначной классической логики.

Чтобы определить понятие пропозициональной функции, рассмотрим следующие примеры:

х - простое число; у - металл; z - студент.

По форме эти выражения напоминают высказывания, но они не определяют никакого конкретного высказывания, ибо содержат переменные, значение которых остается неизвестным. Здесь напрашивается аналогия с алгебраическими функциями или формулами, которые могут выражать конкретные арифметические зависимости. Так, например, линейная функция у = ax + в получает вполне определенное значение, если вместо постоянных и переменных подставляются конкретные числа.

Точно так же пропозициональные функции логики превращаются в конкретные высказывания, если вместо логических переменных подставляются определенные имена. Так, в первом примере, если вместо х подставить число 3, то получится истинное высказывание "3 - простое число". Если же вместо х подставляется число 4, то получится ложное высказывание "4 - простое число". Соответственно этому во втором примере, если вместо у подставить "железо", то получится истинное высказывание "железо-металл". Если вместо у подставляется "фосфор", то получится ложное высказывание "фосфор - металл".

Наконец, в третьем примере, если вместо переменной подставить фамилию студента Иванова, то получится истинное высказывание "Иванов - студент". Итак, одни значения переменных удовлетворяют пропозициональным функциям, другие нет, т.е. в первом случае они превращают их в истинные, во втором - в ложные, но в обоих случаях делают их определенными, конкретными высказываниями.

Отсюда легко дать определение пропозициональной функции, под которой мы будем понимать любое выражение, содержащее переменные, которые при подстановке вместо них постоянных превращают выражение в конкретное высказывание.

Здесь просматривается явная аналогия между логическими, пропозициональными и математическими функциями. Но аналогия не означает тождества, так как в пропозициональной функции вместо переменных можно подставлять имена не только чисел, но и любых нематематичесих объектов, как показывают второй и третий примеры. С этой точки зрения пропозициональная функция является более глубокой абстракцией, чем математическая функция, хотя и аналогична ей.

Чтобы превратить пропозициональные функции в подлинные высказывания, можно, во-первых, придать переменным конкретные значения, как это было показано выше; во-вторых, можно пойти по линии квантификации высказываний. Для пояснения обратимся к примеру. Выражение

можно превратить в конкретное высказывание, если вместо переменных х и у взять определенные числа. Но можно получить высказывание общего характера, если мы свяжем переменные кванторами, которые показывают, что рассматриваемое тождество выполняется для всех чисел. Поэтому мы можем записать его в следующей форме:

где (х) и (у) обозначают кванторы общности, которые часто называют также универсальными кванторами. Эта формула выражает истинное общее высказывание, известное как коммутативный (переместительный) закон для сложения, который обычно словесно передают так: сумма не меняется от перестановки слагаемых.

С помощью высказываний с универсальным квантором формулируются общие законы науки, в частности математические законы, теоремы и их следствия. Обратите внимание, что термин "универсальный" относится только к общим высказываниям определенной предметной области, например, математики, физики, экономики и других наук. Очевидно, что даже в математике не все высказывания имеют универсальный характер. Например, формула х + у = 5 удовлетворяется только при определенных числовых значениях переменных, а именно только тогда, когда х = 1 и у = 4, или х = 2 и у = 3, или х = 3 и у = 2, или х = 4 и у = 1. Поэтому нельзя утверждать, что данное равенство выполняется для всех чисел. Можно лишь сказать, что существуют числа, которые удовлетворяют равенству х + у = 5. Вместо слов " существуют числа х и у" можно ввести квантор существования. Тогда указанное равенство можно представить в такой символической форме:

где (Ех) и (Еу) - кванторы существования.

В традиционной логике эти высказывания называют частными суждениями. Такие суждения оцениваются как истинные или ложные.

Таким образом, один из способов образования высказываний состоит в том, что сначала мы составляем пропозициональную функцию, где фигурируют соответствующие переменные, а затем связываем их кванторами общности и существования. Благодаря этому получаются общие и частные высказывания.

Принципиально другой путь образования сложных (составных) высказываний состоит в объединении двух или нескольких простых высказываний с помощью логических операторов или связок, которые выражаются терминами "и", "или", "если, то" и др. Этот способ напоминает грамматический прием образования сложных предложений путем использования сочинительных и подчинительных союзов. Так, в предложении "Заря сияла на востоке, и золотые ряды облаков, казалось, ожидали солнце", тоже употребляется союз "и", связывающий два простых предложения.

Однако логические связки отличаются от грамматических союзов тем, что они объединяют суждения не по их смыслу, а только по значению их истинности. В отличие от этого грамматические союзы соединяют предложения по их смыслу, придавая сложному предложению определенный целостный, единый смысл.

Таким образом, при логическом объединении высказываний абстрагируются от конкретного содержания и смысла высказываний. Поэтому с точки зрения обыденного сознания некоторые логические операции кажутся явно парадоксальными. Именно поэтому начинающие изучать логику здесь сталкиваются с наибольшими трудностями. Чтобы их преодолеть, необходимо с самого начала понять, что логический подход является более общим, и потому он не может учитывать все конкретные особенности употребления союзов в грамматике.

3 ГЛАВА. Логика высказываний

3 ГЛАВА. Логика высказываний Под высказыванием (суждением) понимают форму мысли, которая выражает соответствие или несоответствие ее действительности. Так, еще великий античный философ Платон утверждал, что "тот, кто говорит о вещах в соответствии с тем, каковы они есть,

3.2. Логическая структура высказываний

3.2. Логическая структура высказываний Различие между высказываниями и предложениями проявляется в их структуре. Грамматическая структура повествовательных предложений состоит из подлежащего, сказуемого и второстепенных членов предложения. В логике суждения также

§ 4. ЯЗЫК ЛОГИКИ ВЫСКАЗЫВАНИЙ

§ 4. ЯЗЫК ЛОГИКИ ВЫСКАЗЫВАНИЙ В современной логике разработано несколько специальных искусственных языков, применяемых для описания ее законов. Наиболее широко для этой цели используется язык логики высказываний, выражения которого точно определяются, что позволяет

§ 1. ВЫВОДЫ ЛОГИКИ ВЫСКАЗЫВАНИЙ

§ 1. ВЫВОДЫ ЛОГИКИ ВЫСКАЗЫВАНИЙ Различают два вида дедуктивных умозаключений в зависимости от того, учитывается ли в них при осуществлении вывода внутренняя структура простых суждений, входящих в посылки и заключения, или нет. В этом параграфе описываются умозаключения,

[б) Смешение у Рикардо процесса образования рыночной стоимости внутри одной и той же сферы производства и процесса образования цены издержек в различных сферах производства]

[б) Смешение у Рикардо процесса образования рыночной стоимости внутри одной и той же сферы производства и процесса образования цены издержек в различных сферах производства] Для построения своей теории ренты Рикардо нуждается, между тем, в двух положениях, которые

§ 4. ЯЗЫК ЛОГИКИ ВЫСКАЗЫВАНИЙ

§ 4. ЯЗЫК ЛОГИКИ ВЫСКАЗЫВАНИЙ В современной логике разработано несколько специальных искусственных языков, применяемых для описания ее законов. Наиболее широко для этой цели используется язык логики высказываний, выражения которого точно определяются, что позволяет

§ 1. ВЫВОДЫ ЛОГИКИ ВЫСКАЗЫВАНИЙ

§ 1. ВЫВОДЫ ЛОГИКИ ВЫСКАЗЫВАНИЙ Различают два вида дедуктивных умозаключений в зависимости от того, учитывается ли в них при осуществлении вывода внутренняя структура простых суждений, входящих в посылки и заключения, или нет. В этом параграфе описываются умозаключения,

4. ФОРМАЦИЯ МОДАЛЬНОСТЕЙ ВЫСКАЗЫВАНИЙ

4. ФОРМАЦИЯ МОДАЛЬНОСТЕЙ ВЫСКАЗЫВАНИЙ Количественные описания, биографическое повествование, установление, интерпретация, выведение знаков, рассуждение по аналогии, экспериментальная верификация — и множество других форм высказываний — все это мы можем найти в

3. ОПИСАНИЕ ВЫСКАЗЫВАНИЙ

3. ОПИСАНИЕ ВЫСКАЗЫВАНИЙ Направление анализа оказалось заметно смещено; я хотел дать определение высказыванию, которое изначально оставалось неопределенным. Все было сказано так, как будто высказывание — легко устанавливаемая общность, законы и возможности

28. Выражение высказываний

28. Выражение высказываний Выражение высказываний происходит при помощи символов– переменных и знаков, обозначающих логические термины. Других символов для этой цели нет. Переменные высказывания выражаются в виде букв латинского алфавита (a, b, c, d и т. д.). Такие буквы

2. Выражение высказываний

2. Выражение высказываний Выражение высказываний происходит при помощи символов — переменных и знаков, обозначающих логические термины. Других символов для этой цели нет. Переменные высказывания выражаются в виде букв латинского алфавита (a, b, c, d и т. д.). Такие буквы

3. Отрицание сложных суждений

3. Отрицание сложных суждений Отрицание суждения в логике — это замена существующей связки внутри сложного высказывания на другую, противоположную последней. Если мы говорим о формуле, в которой можно выразить отрицание сложных суждений, то нужно отметить, что

Несколько высказываний г. Пужада*

Несколько высказываний г. Пужада* Мелкая буржуазия больше всего на свете уважает имманентность; ей нравится все, что в самом себе содержит свой предел, обусловленный простым механизмом возврата, то есть буквально все оплаченное. Стилистические фигуры, весь синтаксис

1.11. Кризис и будущее американской системы образования. (Преодоление кризисных явлений в системе образования США (1980-1990 гг.): методология и результаты.М., 1995)

1.11. Кризис и будущее американской системы образования. (Преодоление кризисных явлений в системе образования США (1980-1990 гг.): методология и результаты.М., 1995) В обзорной информации изложены результаты работы Национальной комиссии США по достижению совершенства в

Читайте также: