Работа электрического поля по перемещению зарядов определяется выражением

Обновлено: 22.12.2024

При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении равна (рис. 1.4.1):

Работа электрических сил при малом перемещении заряда q

Рассмотрим работу сил в электрическом поле, создаваемом неизменным во времени распределенным зарядом, т.е. электростатическом поле

Электростатическое поле обладает важным свойством:

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями.

Следствием независимости работы от формы траектории является следующее утверждение:

Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Силовые поля, обладающие этим свойством, называют потенциальными или консервативными .

На рис. 1.4.2 изображены силовые линии кулоновского поля точечного заряда Q и две различные траектории перемещения пробного заряда q из начальной точки (1) в конечную точку (2). На одной из траекторий выделено малое перемещение Работа Δ A кулоновских сил на этом перемещении равна

Таким образом, работа на малом перемещении зависит только от расстояния r между зарядами и его изменения Δ r . Если это выражение проинтегрировать на интервале от r = r 1 до r = r 2, то можно получить

Работа кулоновских сил при перемещении заряда q зависит только от расстояний r 1 и r 2 начальной и конечной точек траектории

Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис. 1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда q на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю.

Если электростатическое поле создается совокупностью точечных зарядов то при перемещении пробного заряда q работа A результирующего поля в соответствии с принципом суперпозиции будет складываться из работ кулоновских полей точечных зарядов: Так как каждый член суммы не зависит от формы траектории, то и полная работа A результирующего поля не зависит от пути и определяется только положением начальной и конечной точек.

Свойство потенциальности электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. Для этого в пространстве выбирается некоторая точка (0), и потенциальная энергия заряда q , помещенного в эту точку, принимается равной нулю.

Потенциальная энергия заряда q , помещенного в любую точку (1) пространства, относительно фиксированной точки (0) равна работе A 10, которую совершит электростатическое поле при перемещении заряда q из точки (1) в точку (0):

(В электростатике энергию принято обозначать буквой W , так как буквой E обозначают напряженность поля.)

Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.

Работа, совершаемая электростатическое полем при перемещении точечного заряда q из точки (1) в точку (2), равна разности значений потенциальной энергии в этих точках и не зависит от пути перемещения заряда и от выбора точки (0).

Потенциальная энергия заряда q , помещенного в электростатическое поле, пропорциональна величине этого заряда.

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля.

Работа A 12 по перемещению электрического заряда q из начальной точки (1) в конечную точку (2) равна произведению заряда на разность потенциалов (φ1 – φ2) начальной и конечной точек:

A 12 = W p1 – W p2 = q φ1 – q φ2 = q (φ1 – φ2).

В Международной системе единиц (СИ) единицей потенциала является вольт (В).

1 В = 1 Дж / 1 Кл.

Во многих задачах электростатики при вычислении потенциалов за опорную точку (0) удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом:

Потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

Как следует из теоремы Гаусса, эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при r ≥ R , где R – радиус шара.

Для наглядного представления электростатическое поля наряду с силовыми линиями используют эквипотенциальные поверхности .

Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала .

Силовые линии электростатическое поля всегда перпендикулярны эквипотенциальным поверхностям.

Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы. На рисунке ниже представлены картины силовых линий и эквипотенциальных поверхностей некоторых простых электростатических полей.

Эквипотенциальные поверхности (синие линии) и силовые линии (красные линии) простых электрических полей: a – точечный заряд; b – электрический диполь; c – два равных положительных заряда

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей.

Если пробный заряд q совершил малое перемещение вдоль силовой линии из точки (1) в точку (2), то можно записать:

Δ A 12 = qE Δ l = q (φ1 – φ2) = – q Δφ,
где Δφ = φ1 – φ2 – изменение потенциала. Отсюда следует

Это соотношение в скалярной форме выражает связь между напряженностью поля и потенциалом. Здесь l – координата, отсчитываемая вдоль силовой линии.

Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов:

Читайте также: