Принцип суперпозиции электростатических полей определяется выражением
Обновлено: 22.12.2024
Одной из основных задач электростатики является оценка параметров поля при заданном, стационарном, распределении зарядов в пространстве. Один из способов решения подобных задач основан на принципе суперпозиции. Суть его в следующем.
Если поле создается несколькими точечными зарядами, то на пробный заряд q действует со стороны заряда qk такая сила, как если бы других зарядов не было. Результирующая сила определится выражением:
– это принцип суперпозиции или независимости действия сил.Т.к. , то – результирующая напряженность поля в точке, где расположен пробный заряд, так же подчиняется принципу суперпозиции:
Это соотношение выражает принцип наложения или суперпозиции электрических полей и представляет важное свойство электрического поля. Напряженность результирующего поля, системы точечных зарядов равна векторной сумме напряженностей полей, созданных в данной точке каждым из них в отдельности.
Рассмотрим применение принципа суперпозиции в случае поля, созданного электрической системой из двух зарядов с расстоянием между зарядами, равными l (рис. 1.2).
Рис. 1.2
Поля, создаваемые различными зарядами, не влияют друг на друга, поэтому вектор результирующего поля нескольких зарядов может быть найден по правилу сложения векторов (правило параллелограмма)
, и , так как задача симметрична.В данном случае
Следовательно,Рассмотрим другой пример. Найдем напряженность электростатического поля Е, создаваемую двумя положительными зарядами q 1 и q 2 в точке А, находящейся на расстоянии r 1 от первого и r 2 от второго заря-дов (рис. 1.3).
Рис. 1.3
Воспользуемся теоремой косинусов:
Если поле создается не точечными зарядами, то используют обычный в таких случаях прием. Тело разбивают на бесконечно малые элементы и определяют напряженность поля создаваемого каждым элементом, затем интегрируют по всему телу:
где – напряженность поля, обусловленная заряженным элементом. Интеграл может быть линейным, по площади или по объему в зависимости от формы тела. Для решения подобных задач пользуются соответствующими значениями плотности заряда:– линейная плотность заряда, измеряется в Кл/м;
– поверхностная плотность заряда, измеряется в Кл/м2;
– объемная плотность заряда, измеряется в Кл/м3.
Если же поле создано сложными по форме заряженными телами и неравномерно заряженными, то используя принцип суперпозиции, трудно найти результирующее поле.
формуле (1.4.4) мы видим, что – векторная величина:
так что интегрирование может оказаться непростым. Поэтому для вычисления часто пользуются другими методами, которые мы обсудим в следующих темах. Однако в некоторых, относительно простых случаях эти формулы позволяют аналитически рассчитать .В качестве примеров можно рассмотреть линейное распределение зарядов или распределение заряда по окружности.
Определим напряженность электрического поля в точке А (рис. 1.4) на расстоянии х от бесконечно длинного, линейного, равномерно распределенного заряда. Пусть λ – заряд, приходящийся на единицу длины.
Рис. 1.4
Считаем, что х – мало по сравнению с длиной проводника. Выберем систему координат так, чтобы ось y совпадала с проводником. Элемент длины dy, несет заряд Создаваемая этим элементом напряженность электрического поля в точке А:
Вектор имеет проекции dEx и dEy, причем Т.к. проводник бесконечно длинный, а задача симметричная, то у – компонента вектора обратится в ноль (скомпенсируется), т.е. .
Тогда . Теперь выразим y через θ. Т.к. то и , тогда
Таким образом, напряженность электрического поля линейно распределенных зарядов изменяется обратно пропорционально расстоянию до заряда.
Этот результат, полученный для бесконечно длинного линейного заряда, с хорошей точностью справедлив и для линейного заряда конечной длины при условии, что х – мало по сравнению с расстоянием от точки А до концов проводника.
Задание: по тонкому кольцу радиуса R равномерно распределен заряд q. Определить Е в точке А (рис. 1.5).
Рис. 1.5
Читайте также: