Основные понятия формальной логики понятие высказывание умозаключение

Обновлено: 21.11.2024

Слово логика означает совокупность правил, которым подчиняется процесс мышления. Сам термин "логика" происходит от древнегреческого logos, означающего "слово, мысль, понятие, рассуждение, закон". Формальная логика - наука о формах и законах мышления. Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика как наука позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны. Основными формами мышления являются понятия, суждения и умозаключения.

Понятие - это форма мышления, которая выделяет существенные признаки предмета или класса предметов, отличающие его от других. Например, компьютер, человек, ученики.

Суждения - это форма мышления, в которой утверждается или отрицается связь между предметом и его признаком, отношения между предметами или факт существования предмета и которая может быть либо истинной, либо ложной. Языковой формой выражения суждения является повествовательное предложение. Вопросительные и побудительные предложения суждениями не являются.

Суждения рассматриваются не с точки зрения их смысла и содержания, а только с точки зрения их истинности или ложности. Истинным будет суждение, в котором связь понятий правильно отражает свойства и отношения реальных объектов. "Дважды два равно четырем" - истинное суждение, а вот "Процессор предназначен для печати" - ложное. Суждения могут быть простыми и сложными. "Весна наступила, и грачи прилетели" - сложное суждение, состоящее из двух простых. Простые суждения (высказывания) выражают связь двух понятий. Сложные - состоят из нескольких простых суждений.

Умозаключение - прием мышления, позволяющий на основе одного или нескольких суждений-посылок получить новое суждение (знание или вывод).

Примерами умозаключений являются доказательства теорем в геометрии. Посылками умозаключения по правилам формальной логики могут быть только истинные суждения. Тогда и умозаключение будет истинным. Иначе можно прийти к ложному умозаключению.

Математическая логика изучает вопросы применения математических методов для решения логических задач и построения логических схем, которые лежат в основе работы любого компьютера. Суждения в математической логике называют высказываниями или логическими выражениями. Подобно тому, как для описания действий над переменными был разработан раздел математики алгебра, так и для обработки логических выражений в математической логике была создана алгебра высказываний, или алгебра логики.

Читайте также: