Загадки квантовой физики лекция

Обновлено: 27.03.2024

До конца XIX века атомы считались неделимыми «элементами». Открытие радиации позволило Резерфорду проникнуть под «оболочку» атома и сформулировать планетарную теорию его строения: основная масса атома сосредоточена в ядре. Положительный заряд ядра компенсируется отрицательно заряженными электронами, размеры которых настолько малы, что их массой можно пренебречь. Электроны вращаются вокруг ядра по орбитам, подобно вращению планет вокруг Солнца. Теория весьма красивая, но возникает ряд противоречий.

Во-первых, почему отрицательно заряженные электроны не «падают» на положительное ядро? Во‑вторых, в природе атомы сталкиваются миллионы раз в секунду, что ничуть не вредит им — чем объяснить удивительную прочность всей системы? Говоря словами одного из «отцов» квантовой механики Гейзенберга, «никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние». Кроме того, размеры ядра, в котором собрана практически вся масса, в сравнении с целым атомом чрезвычайно малы. Можно сказать, что атом — пустота, в которой с бешеной скоростью вращаются электроны. При этом такой «пустой» атом предстает как весьма твердая частица. Объяснение этому явлению выходит за рамки классического понимания. На самом деле на субатомном уровне скорость частицы возрастает тем больше, чем больше ограничивается пространство, в котором она движется. Так что чем ближе электрон притягивается к ядру, тем быстрее он движется и тем больше отталкивается от него. Скорость движения настолько велика, что «со стороны» атом «выглядит твердым», как выглядят диском лопасти вращающегося вентилятора.

Данные, плохо укладывающиеся в рамки классического подхода, появились задолго до Эйнштейна. Впервые подобная «дуэль» состоялась между Ньютоном и Гюйгенсом, которые пытались объяснить свойства света. Ньютон утверждал, что это поток частиц, Гюйгенс считал свет волной. В рамках классической физики примирить их позиции невозможно. Ведь для нее волна — это передающееся возбуждение частиц среды, понятие, применимое лишь для множества объектов. Ни одна из свободных частиц не может перемещаться по волнообразной траектории. Но вот в глубоком вакууме движется электрон, и его перемещения описываются законами движения волн. Что здесь возбуждается, если нет никакой среды? Квантовая физика предлагает соломоново решение: свет является одновременно и частицей, и волной.

Замирающие частицы


Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье, опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать — просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть иллюзорное порождение нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» — комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин — декогеренция.

Дело вот в чем — во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» — необратимый с точки зрения термодинамики процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните — сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность — выбирать приходится каждому из нас.

Следующая загадка

На самом деле, как вы может быть знаете, существуют два знаменитых американских фильма — “The Secret” (Секрет) и “What the bleep do we know?” (Что мы знаем?), популяризующие некоторые идеи квантовой физики (в частности — некое единство материи, мыслей и информации, и “возможность изменять мир силой мысли”). Они просто взбудоражили мировую общественность, получили огромное число наград и поклонников. Однако, критики со стороны ученого мира они получили не меньше…

Конечно, там много мистики, психологического давления на зрителя, а порой и полной чуши. Однако, я считаю, что их следует посмотреть, потому что рациональное зерно в них все-таки есть, да и сделаны они очень качественно.

Следующая загадка

Есть темы, на которые писать — одно удовольствие. Сто тысяч авторов до тебя уже написали про ЭТО, сто тысяч про ЭТО напишут после, а всё равно найдётся читатель, который прочтёт ЭТО в первый раз. В данном случае речь пойдёт о загадках квантовой механики. Подождите, не уходите на другой портал, пожалуйста! Не переживайте, что возникнут сложности, мы с вами ограничимся лишь скромной ролью стороннего наблюдателя. И поверьте, это совсем не сложно.

Что главное в эксперименте? Приборы? Теоретическая подготовка? Толковый ассистент? Нет, друзья. Единственное, без чего не может обойтись ни один эксперимент, — это экспериментатор. Нет его — нет никакого эксперимента. Пока не появился наблюдатель, который своим пытливым глазом смотрит за исходом опыта, а умелыми руками фиксирует его результаты, то, что происходит, никакой не эксперимент.

Но, оказывается, бывает так, что одно лишь присутствие наблюдателя во время опыта нарушает течение эксперимента, меняет состояние изучаемой системы и заставляет события развиваться в ином направлении. И мы с вами попытаемся разобраться в том, как квантовая механика оценивает такое последствие вмешательства наблюдателя в физическую реальность эксперимента на пяти классических примерах.

Пример первый: квантовая загадка «кота Шредингера»

Хрестоматийный пример, навязший на зубах: «кот Шредингера». В герметичный чёрный (да какая на самом деле разница, какого он цвета!) ящик Шредингер (Erwin Schrödinger) прячет условного (воображаемого) кота, ампулу с ядом и спусковой ядерный механизм. Это устройство может в любой момент разбить ампулу и уничтожить животное. Весёленький эксперимент, скажете вы, и будете правы. Единственное оправдание, которое может спасти честь австрийского учёного в том, что опыт исключительно теоретический, и призван продемонстрировать логику размышления физика.

Спусковой механизм в случайный момент может выпустить радиоактивный атом, при распаде которого разобьётся ампула с ядом. Точное время распада не задано. Наблюдателю известно только время полураспада, то есть отрезок времени, за который распад произойдёт с вероятностью «фифти-фифти» — 50 на 50. Таким образом, наблюдая за закрытой коробкой, мы понимаем, что кот внутри своей замкнутой системы существует одновременно в двух состояниях: он либо жив, либо мёртв. Эти оба состояния можно описать волновой «функцией кота» (жив-мёртв), которая на протяжении времени изменяется. Чем дальше мы отдаляемся от начального этапа (кот точно жив), тем больше вероятность того, что ампула уже разбилась и эксперимент закончен (кот мёртв).

Но убедиться в том, что эксперимент закончился, можно, только открыв коробку. Потому до тех пор, пока наблюдатель не проник в замкнутую систему, вероятность того, что кот жив, остаётся, хоть и постоянно стремится к нулю. Таким образом, кот может вечно балансировать на грани жизни и смерти, пока его судьбу не определит учёный, которому надоело стоять над закрытой коробкой. И только тогда происходит коллапс волновой функции и из множества вариантов реализуется лишь один.

Это и есть так называемая копенгагенская интерпретация науки под названием «квантовая механика». Достоверно определить состояние любой системы можно только путём наблюдения. А наблюдатель одним лишь своим присутствием меняет результат исследования. Это и есть загадочный момент, на который указал Шредингер.

Пример второй: «замри-частица»

В 60-х годах прошлого столетия был предсказан квантовый эффект, который впоследствии доказала на практике группа учёных под руководством нобелевского лауреата Вольфганга Кеттерле (Wolfgang Ketterle). Изучая распад возбуждённых атомов рубидия на те же атомы в стабильном состоянии и фотоны, исследователи зафиксировали явное воздействие наблюдателя на результат эксперимента.

Нестабильная радиоактивная частица характеризуется средним временем жизни, которое может увеличиваться, если за ним ведётся пристальное наблюдение. Так, после начала эксперимента учёные начали наблюдать за распадом атомов в двух различных режимах: беспрерывном (система постоянно облучалась слабым световым потоком, фиксировавшим изменения) и импульсном (в систему периодически попадал более мощный, но короткий световой пучок).

Полученный результат оказался весьма интересным. Внешние световые воздействия на систему замедляли распад частиц, возвращая их в исходное состояние. Жизнь возбуждённых атомов рубидия, которые стремительно распадались, удавалось продлить в десятки раз. Эффект вошёл в историю науки под кодовым названием «замри-частица».

Пример третий: «электронный дуализм»

Одним из самых элегантных за всю историю квантовой физики признан опыт с дифракцией электронов, проведённый в 1961 году. Суть опыта заключалась в следующем: на пути потока электронов, летящих к фотофинишу, была установлена медная пластина с двумя щелями.

Если представить пучок электронов как группу маленьких заряженных шариков, можно было ожидать на экране две полосы напротив одной и другой щели. Но на самом деле, на экране появилось иное изображение — зебра сложной конфигурации, состоящая из чередующихся и перекрывающих друг друга светлых и тёмных полос. Результат эксперимента не менялся даже в том случае, если частицы пускались через щель не сплошным потоком, а поодиночке. Каждый из электронов в этот момент проявлял свои волновые функции и мог одновременно пройти через две щели.

Но это была только первая половина эксперимента. Когда физики предприняли попытку зафиксировать результат, картинка на экране вмиг стала классической — две полосы напротив щелей в медной пластине и никакой «странной» зебры. На глазах наблюдателя электроны «потеряли» свою волновую составляющую и продемонстрировали привычную для школьника средних классов картинку. Присутствие наблюдателя оказало воздействие на систему и автоматически изменило результаты самого наблюдения.

Пример четвёртый: «некоторые любят погорячее. »

Кроме электронов, в роли подопытных кроликов часто выступают крупные молекулы, составленные из нескольких десятков атомов углерода (фуллерены). Фуллерен (Fullerenes), составленный из шести десятков атомов, напоминает настоящий футбольный мяч, сшитый из шестиугольников. С этими крупными элементами проводят опыты по дифракции, подобные тем, которые ставят на электронах.

Не так давно венские учёные из группы профессора Цайлингера (Anton Zeilinger) рискнули добавить в опыт «элемент наблюдателя». Во время исследования экспериментаторы обстреливали подвижные фуллерены лазерным излучением. Молекулы нагревались от внешнего воздействия и светились в исследуемом пространстве, тем самым, обнаруживая своё местоположение.

Вместе с началом свечения изменялось и само поведение частиц. Если в «темноте», без присутствия наблюдателя, фуллерены аккуратно обходили препятствия, что выказывало их волновые свойства, то с появлением «зрителя», частицы начинали вести себя как твёрдые тела со всеми вытекающими характеристиками поведения, известными из классической физики.

Пример пятый: «. а некоторые похолоднее»

Но наиболее интересной из всех загадок квантовой физики является загадка принципа неопределённости Гейзенберга (Werner Karl Heisenberg). В популярном изложении он звучит так: одновременно установить и положение и скорость квантового объекта невозможно. То есть, чем точнее мы измеряем импульс элементарной частицы, тем менее точно можно установить, где она в данный момент находится. Это, конечно же, плохо применимо в мире больших объектов и вообще непонятно, что из этого может вытекать даже на элементарном уровне.

Эксперимент группы под управлением профессора Шваба (Keith Schwab) добавил пикантности классической неопределённости Гейзенберга. Разместив на пути движения микрочастиц крошечную алюминиевую полоску, учёные подключили прибор, способный с высочайшей точностью регистрировать её положение. И тут же получили два интересных результата. Во-первых, каждое новое измерение объекта меняло положение пластины. Прибор очень точно определял координаты полоски и тем самым менял её скорость, а, следовательно, и последующее положение в пространстве.

Но если первое открытие было спрогнозировано принципом неопределённости, то второе стало неожиданностью для всех. Измерения, которые делали учёные, приводили к охлаждению полоски. То есть, наблюдатель одним лишь своим присутствием менял физическую характеристику объекта. В данном случае температуру. Сразу нашлось и практическое использование этого эффекта: теперь профессор Шваб думает, как применить это явление для охлаждения сложнейших микросхем.

P. S.: Ощущение, что мир существует лишь в тот момент, пока вы на него смотрите, посещало даже великого Эйнштейна. Но он при этом уверял нас, что это не так. И действительно, как может наблюдающий за луной воздействовать на саму луну? Ну, а вдруг, на самом деле, всё, что происходит вокруг нас, всего лишь плод нашего воображения? И стоит нам уснуть, как мир исчезнет. Или всё-таки правы те, кто говорит, что законы физики мироздания и законы понимания этого мироздания (психики) должны рассматриваться как взаимодополняющие друг друга? Как две части одного большого учения.

Или вообще, это одна и та же наука? И называется она «физика». Потому что по сравнению с физикой всё остальное не более чем коллекционирование марок.

Дифракция электронов


По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов — медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики — объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Следующая загадка


Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция — математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому — тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Охлаждающее измерение


Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр — около 1 нм), а на чуть более ощутимом объекте — крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно — после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись — теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Нагретый фуллерен


Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах — крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Читайте также: