Загадка кто из человечков погибнет гифка

Обновлено: 22.11.2024

Занятная графическая головоломка на логику, физику и геометрию: кто из человечков погибнет?

Только 1 человек из 10000 отгадывает эту загадку.

Есть занятная версия: погибнут все, потому как они черные, а в мире бушует Эбола. Но она не принимается.


Сначала загадать - после смотреть ответ

Итак, правильный ответ B,C,D

Последние записи в журнале

Посещение Владимиром Путиным Всероссийского детского центра «Океан» (Владивосток). 30-я Международная выставка «Агрорусь» (Санкт-Петербург, по 4…

1. Инаугурация Михаила Дегтярева прошла без передачи губернатору церемониальной цепи из серебряного сплава, которую якобы не смогли найти.…

30 сентября, четверг Второй раунд российско-американских консультаций по стратегической стабильности (Женева). Подготовительное совещание в…

19 комментариев — : ( 19 комментариев — Оставьте комментарий )

Не факт. Ничего не известно про массу шаров. Массы красного может не хватить для убийства D и поворота качелей, а синий может взлететь гораздо выше или вообще остаться на месте. И это не говоря о том, что B и D могут просто присесть, а С выползти из-под шипов.

Задача про монетки

Это одна из тех задачек, что абсолютно взрывают мозг своей кажущейся невозможностью решения и в то же время, простотой и гениальностью правильного ответа.

Придумал эту задачку по некоторым источникам знаменитый математик и писатель-фантаст, умница Мартин Гарднер.

"В тёмной комнате стоит стол, на котором лежат монеты — 5 вверх решкой и 8 орлом. Нужно разделить их на 2 кучки таким образом, чтобы в каждой оказалось одинаковое количество монет решкой вверх. Монетки можно переворачивать. Напоминаю: всё происходит в полной темноте. Решение настолько красивое, что удовольствие, полученное от озарения, практически не с чем сравнить в обычном материальном мире. Рекорд двухлетней давности — 3 минуты — пока не побит."

Лично я решить в свое время так и не смог, максимум решил подбрасывать в темноте монетки и делить поровну на 2 кучки, шансы при таком подходе получить равное число решек в целом неплохие. Мда, все-таки я инженер, а не теоретик.

Правильное решение такое — надо разделить монеты на две кучки — по 8 и по 5 монет, и одну из кучек перевернуть. И все!

Предположим, что в кучке с 8 монетами осталось х решек. Тогда в другой кучке будет (5 -х) решек, так как всего их по условию 5. А орлов во второй кучке будет [5 - (5 - х)] = х. Теперь переворачиваем пять монет во второй кучке и автоматически получаем число решек, равное х, оно же равное числу решек в первой кучке. Просто? Красиво? Здорово!

Показать полностью 2 года назад

20-летний житель Атырау решил одну из трёх знаменитых задач древности

20-летний Акылбек Копжасаров из Атырауской области решил одну из трёх знаменитых задач древности — Задачу о трисекции угла. Этот факт уже подтверждён комитетом Филдсовской премии и Европейским математическим сообществом, передает azh.kz.

Эта задача наряду с задачами о квадратуре круга и удвоении куба на протяжении многих веков считалась классической неразрешимой головоломкой на построение.

Задача заключается в том, чтобы с помощью циркуля и линейки разделить заданный угол на три равные части. Невозможность такого построения даже была доказана французским математиком Пьером Лораном Ванцелем в 1837 году.

Акылбек о ней впервые услышал от своего учителя на факультативных занятиях по математике в 15 лет. С тех пор каждый свободный час он проводил за вычислениями.

Это решение древнейшей задачи представлено на сайте Европейского математического общества. Больше, чем само открытие, в Акылбеке поражает факт его природного математического дара — у него нет ни одной образовательной степени: ни магистерской, ни даже бакалавриата.

Как только Акылбек понял, что нашёл решение задачи, тут же написал письмо в Европейское математическое общество. И спустя 2 месяца получил ответ, что высокая комиссия готова номинировать Акылбека Копжасарова на премию в 2018 году во время очередного Европейского математического конгресса.

На его адрес стали приходить восторженные отзывы от математиков всего мира. Акылбек с ужасом ждал, что кто-то обнаружит погрешности в решении, но, к счастью, по сей день никто таких доказательств не предъявил. Он не скрывает своего желания получить и премию Абеля — это своего рода Нобелевская премия по математике, денежный размер которой составляет более $1 млн.

Головоломка 90-летней давности

Показать полностью 1 3 года назад

Подбери код от замка

2-9-1 - один номер верный и правильно расположен

2-4-5 - один номер верный, но неправильно расположен

4-6-3 - два номера верны, но неправильно расположены

5-7-8 - все номера неверны

5-6-9 - один номер верный, но неправильно расположен

Показать полностью 1 Эмоции 2 года назад

Следующая загадка

Есть таблица с датами, номерами и цветами. Справа выписаны все уникальные цвета и напротив них поставлены чекбоксы.
Что нужно сделать?
Нужно сделать таблицу в зеленой зоне, в которую будут попадать только значения из первой таблицы, цвета которых отмечены в чекбоксах. Сделать это нужно за одну формулу (одну ячейку с формулами) и без использования скриптов или макросов.
Если такой формат зайдет - скину еще задачек, у меня их вагон и тележка.

Показать полностью Эмоции 9 месяцев назад

Сломать голову

Не для рейтинга.
Моему ученику (8 лет) задали квест на олимпиаде, мы с друзьями уже сломали мозг

помогите кто чем может

3 года назад

Следующая загадка

Занимательная графическая головоломка на логику, физику и геометрию: кто из человечков погибнет?
Очевидно, что самый везучий из них — E. Ваши варианты?

Related posts:

Мы в соцсетях

Facebook

ВКонтакте

Одноклассники

Лучшие посты

Вверх

© 2010–2021 За городом Копирование материалов
без обратной ссылки запрещено!

Нетранзитивность в играх, психологии, биологии, математике и физике

Парадоксы в статье начинаются прямо с автора - Александра Поддьякова, доктора психологических наук и главного научного сотрудника Института психологии РАН. С подачи Александра Маркова и других популяризаторов мы уже привыкли к постоянным "вторжениям" биологов в область психологии человека, но для некоторых окажется неожиданностью, что и психолог может писать интересные статьи, затрагивающие не только биологию, но и физику, и математику.

Начну с несколько переделанной мной относительно оригинала математической задачи:

Представьте себе, что я - продвинутый лохотронщик, предлагающий вам сыграть в игру: вы выбираете цвет (допустим, вы выбрали красный) одной из 3 групп по 3 гвоздя каждая, гвозди вставлены в дырки так, что наружу торчат только их шляпки, затем я скрытно от вас перетасовываю вашу (красную) группу гвоздей, а вы, также скрытно от меня, тасуете остальные (синие и зелёные) гвозди. После чего мы делаем одинаковые ставки и тянем жребий: вы вытягиваете гвоздь выбранного вами цвета, а я тяну гвоздь любого другого цвета. У кого длиннее, того и деньги.

Как вариант, позволяющий не допустить подмены во время перетасовок, можно размещать гвозди в 3 вращающихся слотах по 3 дырки каждый и быстро крутить слоты, не отворачиваясь.

Проиграв за десяток-другой ходов некоторую сумму на красных гвоздях, вы подмечаете, что я всегда тянул синий гвоздь и никогда не зелёный. "Ага!" - говорите вы себе. - "Синие гвозди в среднем длиннее". И выбираете синий цвет. И снова постепенно проигрываете, отмечая, что теперь я всегда тяну зелёные гвозди.

Поскольку в том, что красные в среднем короче синих, вы уже убедились в первом туре, вы делаете вывод, что самые длинные гвозди - в зелёном наборе, а мой предыдущий выбор синих был хитрым разводом. Поэтому теперь вы выбираете зелёный цвет, и.

Ответ на вопрос "что будет, если выбрать зелёный цвет?" я предлагаю вам найти самостоятельно либо подсмотреть в исходной статье. Для желающих подумать-посчитать, над гвоздями надписаны их длины в сантиметрах.

Это была математика, а вот вам задачка, "атакующая" один из законов физики, закон сохранения энергии:

(рисунок автора исходной статьи, но я убрал подсказки, поясняющие, в чём тут дело, хотя и поленился исправлять несогласованность проекций грузиков и шестерёнок)

Как легко заметить, при одинаковом весе грузиков (показаны шариками) в левой части рисунка красный будет, разматываясь с оси красной шестерни, опускаться вниз, поднимая, в силу разницы передаточных чисел шестерней, наверх зелёный. Если же отсоединить зелёную шестерню от красной и присоединить к синей (центр рисунка), то зелёный грузик перетянет синий, подняв его вверх. А синий грузик (правая часть рисунка) перетянет красный.

Вечный двигатель? Разумеется, нет. Объяснение, почему нет - опять же, в исходной статье.

Но для понимания предыдущей задачи (про гвозди) важен не "вечный двигатель", а сам факт того, что красный блок "сильнее" зелёного, зелёный "сильнее" синего, а синий "сильнее" красного. Дочитавшие до этого места уже должны догадаться, что выбрав зелёные гвозди, они также проиграют, поскольку я в этом случае стану тянуть исключительно красные. Которые, казалось бы, "в среднем короче" синих, а те, в свою очередь, "в среднем короче" зелёных. Голландец Оскар ван Девентер даже сконструировал механическую игру, в которой какую бы из трёх шестерёнок вы ни выбрали, оппонент может выбрать после вас одну из двух оставшихся так, чтобы вас победить.

Это парадоксальное свойство специально подобранных групп и правил их сравнения называется нетранзитивностью:

Детская игра "камень-ножницы-бумага" отлично его иллюстрирует: камень сильнее ножниц, ножницы сильнее бумаги, бумага сильнее камня (последнее неочевидно и не факт, что верно, но для детишек сойдёт).

А вот игра совершенно на первый взгляд недетская, хотя детишек среди зрителей у неё всегда в достатке. Как, впрочем, и взрослых, включая опытных конструкторов-робототехников. Знакомьтесь: настоящие боевые роботы-гладиаторы в серии игр BattleBots:

Так получилось, что я сам на отдыхе люблю поглазеть на ютюбе, как мочат друг друга и разносят на куски эти механизмы, сконструированные ради одной-единственной цели - уничтожения себе подобных. И я своими глазами наблюдал, что "косильщики" (сверху) как правило быстренько разбирают на запчасти "давильщиков" (снизу и справа), те чаще всего успешно перекусывают "кидал" (слева), а "кидалы" подбрасывают "косильщиков" так, что те трескаются своими рубящими лопастями об пол и стены, несколько раз подпрыгивают и отдают робогу душу.

Как показывает в своей статье Александр Поддьяков, то же самое наблюдается и в живой природе: иначе, существуй некий универсальный принцип "лучшей приспособленности", довольно быстро выявится некий супер-пупер-победитель, который вытеснит всех остальных, после чего ему останется либо подыхать с голоду, либо фотосинтезировать в гордом одиночестве (отравляя воздух кислородом и в конечном итоге также склеивая ласты или что там у него вместо ласт будет). Этого не произошло исключительно благодаря нетранзитивности приспособленности: виды, выигрывающие в чём-то одном, проигрывают в чём-то другом и универсального критерия их сравнения не существует. Более того, виды, выигрывающие против одних по совокупности, сливают по совокупности же другим, которые, опять-таки по совокупности, проигрывают третьим - как раз тем самым, что всегда побеждаются первыми. Ну, на самом деле, там всё гораздо сложнее, конечно, но принцип именно такой.

И вот теперь мы переходим к тому, ради чего, собственно, автор-психолог свою статью и затеял. К отсутствию единых универсальных критериев сравнения во многих случаях.

Когда некий эксперт сравнивает два предложенных ему решения проблемы, назовём их (1) и (2), он может выбрать из них лучший - допустим, это вариант (2). И абсолютно логично обосновать свой выбор - на то он и эксперт. Но довольно часто бывает так, что другой эксперт, ничуть не менее квалифицированный, сравнит вариант (2) с неким вариантом (3) и столь же убедительно докажет, что (3) лучше, а третий будет сравнивать (3) с уже отброшенным нами вариантом (1) и придёт к выводу, что он-то, (1), и является самым лучшим вариантом.

И это - реальная проблема, какие бы эксперты какой бы выбор ни делали. Выборы президента (во избежание срача не буду уточнять, какой именно страны). Выбор спутницы жизни. Выбор своего пути в этой самой жизни. И так далее.

Показать полностью 4 2 года назад

Следующая загадка

Краткое описание: Вашему вниманию предлагается загадка, которая была придуманная еще во время Советского союза. Считается, что решить головоломку невозможно. Выглядит загадка как картинка, на которой изображен лагерь туристов расположившейся под холмом. От вас требуется ответить на двенадцать вопросов, что очень непросто. После каждого задания автор ролика дает правильный ответ.

Источник: YouTube. Автор: koolbab .
Смотрите рубрику полностью Загадки с ответами.

Длительность: 0:12

Добавлено: 2017-03-11

Цитата по теме:
Жизнь слишком коротка, поэтому начинайте с десерта. Барбра Стрейзанд ©

Интересные задачи из книги Я.И.Перельмана

Нашел свою старую книгу, которую любил решать в детстве. Заставляет мозги шевелиться. Дал решить мелкой- решила только с часами. Ответы выложу позже в комментариях.
ps если Вам понравится - выложу ещё

Показать полностью 2 4 года назад

Читайте также: