Химические элементы загадки материи
Обновлено: 24.12.2024
Наша Вселенная расширяется с самого момента своего рождения около 14 миллиардов лет назад. И хотя может показаться, что со временем этот процесс должен замедлится, этого не происходит. Вселенная, вопреки нашим ожиданиям, расширяется со все возрастающей скоростью. Благодаря главенствующей в космологии теории Большого взрыва мы знаем, почему другие галактики удаляются от нас по мере того, как пространство продолжает расширяться. Этот феномен объясняет слабое свечение, наблюдаемое повсюду во Вселенной (свечение – это оставшееся тепло от рождения Вселенной, которое теперь остыло всего на несколько градусов выше абсолютного нуля). Словом, это удивительно мощное и элегантное объяснение того, как возникла наблюдаемая Вселенная. Но почему она расширяется все быстрее и быстрее? Концепция Большого взрыва, увы, не указывает на то, продолжит ли Вселенная расширяться и охлаждаться или же она в конечном итоге сократится до другой сверхгорячей сингулярности, тем самым, возможно, перезапустив весь цикл. Окончательная же судьба Вселенной, вероятно, зависит от свойств двух таинственных явлений – темной материи и темной энергии. Дальнейшее изучение того и другого может показать, как погибнет Вселенная.
Теория Большого взрыва гласит, что Вселенная возникла из одной невообразимо горячей и плотной точки под названием сингулярность более 13 миллиардов лет назад. Это произошло не в уже существующем пространстве. Скорее, это инициировало расширение — и охлаждение — самого пространства.
Как возникла Вселенная?
Интересно, что многие особенности современной Вселенной имеют смысл, только если пространство очень рано подверглось сверхбыстрому расширению. Теория инфляции гласит, что Вселенная резко расширилась за крошечную долю секунды после Большого взрыва, движимая фантастическими количествами энергии, содержащейся в самом пространстве. После этого периода Вселенная продолжала расширяться и охлаждаться, но гораздо более медленными темпами.
в большинстве моделей инфляции флуктуации в чрезвычайно малых масштабах раздуваются, превращаясь в макроскопические различия. Эти различия невероятно крошечные и чтобы описать с их помощью реальность, потребуется новая теория физики.
Выходит, инфляция растянула пространство так быстро, что оно стало чрезвычайно однородным. Но пространство неоднородно: небольшие колебания плотности материи, присутствовавшие в ранней Вселенной, значительно усилились во время инфляции. Эти флуктуации плотности в конечном итоге создали крупномасштабную структуру Вселенной.
Подробнее о том, что представляет собой эта удивительная структура, я рассказывала в этой статье, рекомендую к прочтению!
В заключении
И все же, для окончательного решения этой загадки ученым потребуется нечто большее, чем просто измерения. Лучшие физики-теоретики мира пытались разработать единую физическую теорию, которая полностью объясняет все аспекты Вселенной. Но до сих пор гравитация и квантовая физика не нашли точек соприкосновения, несмотря на то, что теоретики считают, что их объединение необходимо для любой теории, способной объяснить темную энергию. Исследователи также отмечают, что если вклад темной энергии будет расти по мере старения Вселенной, то со временем Вселенная будет расширяться все быстрее.
Другие галактики за пределами нашей Локальной группы — которые сольются в единую гигантскую галактику по прозвищу Милкомеда — в конечном итоге будут унесены на такие большие расстояния, что любые обитатели нашей Солнечной системы в далеком будущем не смогут их увидеть.
Местная Группа галактик, в которой находимся мы и наша соседка Галактика Андромеды
В настоящее время астрономы планируют создание новых космических и наземных телескопов, а также более мелкомасштабное оборудование и проведение исследований. С помощью новейших инструментов они планируют дальнейшее изучение фундаментальных загадок Вселенной. Такой огромной и непрерывно расширяющейся.
Большой взрыв и темная материя
Несмотря на то, что теория Большого взрыва является общепринятой среди большинства исследователей, она не указывает на то, будет продолжит ли Вселенная расширяться и охлаждаться или же она в конечном итоге сократится до сверхгорячей сингулярности, возможно, перезапустив весь цикл. Окончательная судьба Вселенной, вероятно, зависит от свойств двух таинственных явлений – темной материи и темной энергия. Именно дальнейшее изучение того и другого может показать, каким будет конец Вселенной.
Проблема заключается в том, что вся знакомая материя — Земля, остальная часть Солнечной системы, звезды, галактики и межзвездный газ — составляет лишь около одной шестой массы Вселенной. Но ученые могут видеть влияние остальной массы Вселенной – ее-то они и называют темной материей.
Присутствие этой таинственной субстанции в галактиках заставляет их вращаться быстрее, чем если бы там была только обычная материя. Высокие концентрации темной материи заметно искривляют свет, идущий издалека. Однако его природа остается загадкой.
Ранее исследователи составили самую подробную карту распределения темной материи во Вселенной на сегодняшний день.
Напомним, что темная материя, вероятно, состоит из элементарных частиц, созданных в результате Большого взрыва, но еще не обнаруженных на Земле. Одна из причин, по которой физики хотят построить более мощные ускорители частиц, заключается в поиске темной материи. Но еще более таинственной, чем темная материя, является сила, которая, как считается, ответственна за расширение Вселенной.
Еще больше увлекательных статей о последних научных открытиях в области астрономии и космологии, читайте на нашем канале в Google News.
Следующая загадка
Слово «атом» — греческого происхождения, и переводится оно «неделимый». Принято считать, что первым идею о том, что кажущаяся гладкой и непрерывной материя на самом деле состоит из великого множества мельчайших и потому невидимых частиц, выдвинул древнегреческий философ Демокрит (чей «расцвет», согласно восхитительному по образности выражению классиков, пришелся на V век до н. э.). О жизни Демокрита нам, однако, практически ничего неизвестно, и оригинальные труды этого мыслителя до наших дней не дошли. Поэтому об идеях Демокрита остается судить в основном по цитатам из его работ, которые мы находим у других авторов, прежде всего у Аристотеля.
Логика рассуждений Демокрита, если перевести ее на современный язык, была крайне проста. Представим, говорил он, что у нас есть самый острый в мире нож. Берем первый попавшийся под руку материальный объект и разрезаем его пополам, затем одну из получившихся половинок также разрезаем пополам, затем разрезаем пополам одну из получившихся четвертинок и так далее. Рано или поздно, утверждал он (основываясь, как и все древнегреческие мыслители, прежде всего на философских соображениях), мы получим частицу столь мелкую, что дальнейшему делению на две она не поддается. Это и будет неделимый атом материи.
По представлениям Демокрита атомы были вечными, неизменными и неделимыми. Изменения во Вселенной происходили исключительно из-за изменений в связях между атомами, но не в них самих. Тем самым он тонко обошел давнишний спор древнегреческих философов о том, подвержена ли переменам сама суть видимого мира или все перемены в нем носят чисто внешний характер.
От древнегреческих представлений об атоме на сегодняшний день сохранилось разве что само слово «атом». Теперь мы знаем, что атом состоит из более фундаментальных частиц (см. Элементарные частицы). Ясно, что между древнегреческой теорией и современными научными исследованиями мало общего: идеи Демокрита не основывались ни на каких наблюдениях или практических опытах. Демокрит, подобно всем натурфилософам античности, просто рассуждал и делал умозрительные заключения относительно природы мира.
Тем не менее труды Демокрита не остались без признания и в современном мире. На последней греческой монете достоинством 10 драхм (теперь она выведена из обращения и заменена евро) на лицевой стороне изображен портрет Демокрита, а на оборотной — схематическая модель атома. Я весьма признателен своему другу Гансу фон Байеру, обратившему мое внимание на то, что на монете изображен атом с тремя электронами — стало быть, это атом лития. Демокрита называли «смеющимся философом» (похоже, он обладал несвойственным другим античным философам чувством юмора). Не потому ли на монете, увековечивающей его память, изображен именно атом лития — химического элемента, который теперь широко используется для лечения депрессии?
Идея об атомном строении материи так и оставалась чисто философским умопостроением вплоть до начала XIX века, когда сформировались основы химии как науки. Химики первыми и обнаружили, что многие вещества в процессе реакций распадаются на более простые компоненты. Например, вода распадается на водород и кислород. Однако некоторые вещества — те же водород и кислород — разложению на составляющие при помощи химических реакций не поддаются. Такие вещества назвали химическими элементами. К началу XIX века было известно около 30 химических элементов (на момент написания этой статьи их открыто более 110, включая искусственно полученные в лабораторных условиях; см. Периодическая система). Кроме того, было установлено, что в процессе химических реакций количественное соотношение веществ, участвующих в данной реакции, не изменяется. Так, для получения воды неизменно берутся восемь массовых долей кислорода и одна доля водорода (см. Закон Авогадро).
Первым осмысленную интерпретацию этих фактов предложил Джон Дальтон, чьё имя увековечено в открытом им законе Дальтона. В своих химических опытах он исследовал поведение газов (см. Закон Бойля—Мариотта, Закон Шарля и Основной закон термодинамики), но этим круг его интересов не ограничивался. В 1808 году он приступил к публикации своего фундаментального двухтомного труда «Новая система химической философии», радикально повлиявшего на дальнейшее развитие химии. В этой работе Дальтон предположил, что осмыслить и интерпретировать последние достижения экспериментальной химии можно только приняв, что каждому химическому элементу в этих опытах соответствует уникальный для него атом, и что именно смешение и объединение в различных пропорциях этих атомов приводит к образованию наблюдаемых в природе химических веществ. Например, вода, по Дальтону, состоит из сочетания двух атомов водорода и одного атома кислорода (общеизвестная формула H2O). Тот факт, что все атомы одного вида неразличимы между собой, удачно объяснял, почему при химических реакциях они всегда обнаруживаются в неизменных пропорциях. Так, в случае с водой, два атома водорода всегда одни и те же, где бы мы ни взяли эту воду, и всегда находятся в одной и той же связи с единственным атомом кислорода.
Для Дальтона, как и для Демокрита, атомы оставались неделимыми. В черновиках и книгах Дальтона мы находим рисунки, где атомы представлены в виде шариков. Однако основное положение его работы — что каждому химическому элементу соответствует особый тип атома — легло в основу всей современной химии. Этот факт остается непреложным и теперь, когда мы знаем, что каждый атом сам по себе является сложной структурой (см. Опыт Резерфорда) и состоит из тяжелого, положительно заряженного ядра и легких, отрицательно заряженных электронов, вращающихся по орбитам вокруг ядра. Достаточно обратиться к сложностям квантовой механики (см. также Атом Бора и Уравнение Шрёдингера), чтобы понять, что концепция атома не исчерпала себя и в XXI веке.
Неплохо, однако, для идеи, зародившейся в философских спорах 2500 лет назад!
Состав Вселенной и другие вопросы
Большинство исследователей полагают, что состав вселенной на удивление сложно определить, ведь помимо темной энергии, пространство также заполнено темной материей. (Обычная видимая материя составляет всего 5% Вселенной, в то время как темная материя и темная энергия составляют 26% и 69% соответственно). Другими словами, астрономы на самом деле не понимают, из чего состоит около 95% Вселенной.
Все потому, что понять и измерить темную материю и темную энергию больше чем сложно. Представьте, что вы бродите по темной комнате и время от времени прикасаетесь к слону, которого никогда не видели и отчаянно пытаетесь понять что это такое и как он выглядит. Исходя из этой аналогии, темная комната размером со Вселенную, и вместо того, чтобы прикасаться к слону, астрономы могут видеть только его воздействие на другие объекты.
Материя во Вселенной распределена не равномерно
Мы видим, что темная материя гравитационно взаимодействует с видимой материей и подозреваем, что она состоит из одной или нескольких неизвестных частиц. Темная энергия может быть пятой фундаментальной силой Вселенной. (Известны четыре: слабое взаимодействие, сильное взаимодействие, гравитация и электромагнетизм.)
Самое простое объяснение темной энергии состоит в том, что это – внутренняя энергия самого пространства. Альберт Эйнштейн первоначально ввел такую концепцию, чтобы учесть плоскую вселенную, когда излагал теорию относительности (ОТО). Так называемая космологическая постоянная Эйнштейна – это сила отталкивания, которая противодействует силе притяжения гравитации, чтобы Вселенная не сжималась и не расширялась.
Сегодня никто не знает, будет ли Вселенная расширяться вечно или этот процесс когда-нибудь закончится
Но, в конце концов, Эйнштейн отказался от своей концепции после того, как Эдвин Хаббл наблюдал расширение Вселенной. Нобелевская премия по сверхновым в 1990-х годах возродила космологическую постоянную и в конечном итоге связала ее с темной энергией. И хотя астрономы не могут видеть темную материю напрямую, они могут определить ее местоположение по наблюдениям. Распределение темной материи (пурпурного цвета) в сверхскоплении Abell 901/902 показано на этой фотографии путем объединения изображения сверхскопления в видимом свете и карты области темной материи.
Следующая загадка
Химия — одна из важнейших и обширных областей естествознания, наука о веществах, их свойствах, строении и превращениях, происходящих в результате химических реакций, а также фундаментальных законах, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий.
Чтобы узнать ответ — нажмите на загадку
Углерод |
Кислорода |
Азот |
Кислоты |
Первый слог – предлог известный, Я – газ, простое вещество, Основа моя – сухая трава, Следующие загадки про химические элементы автор Громова Нелли Анатольевна, СОШ № 32, г. Уссурийск В холод прячется в нору, Кто с кем в родстве – Не руками решетка построена: Действует как решето, Только в воду окунется, Пусть математик удивится: Скажите, что это такое: Океан ветрам послушен, Получишь газы из воды, Адрес точный, если спросят: 32,16,8 Купаются в холодную погоду, Если крупинки в жидкости найдет, Кислота тепла боится, быстро в воду превратится. Самой сильной из кислот имя галоген дает. Капля воды попала на кусок и превратилась в кипяток. Молоко не скисло, на стене повисло. Природной соли маленький кусок отвечать урок помог. Стояла решетка, на солнце покрылась, но дождик прошел и она растворилась. Расскажите в чем тут дело: гасили то, что не горело? На полях они витамины, а на складе вроде мины. Только в воду соль попала, холодней в стакане стала. Красив, наряден карбонат, ему строитель очень рад. Хлеб из муки не испекут, но от нее привеса ждут. Поташ, селитру, сильвинит, какой металл объединит? Какой элемент называют по имени одной части света? Соль на треть состоит из азота, крестьянину помощь она и работа. Шпаты, глины, мусковит, какой металл объединит? натриевая соль хлороводородной кислоты, каменная соль, “натрий хлор”, поваренная соль.) Это и в учебнике читали вы не раз: Гость из космоса пришел, в воздухе приют себе нашел. В доме выше всех живем, вдвоем тепло и свет даем. Он безжизненным зовется, но жизнь без него не создается. Красив в кристаллах и парах, на детей наводит страх. Из горы кусочек вынули, в деревянный ствол задвинули. Гордиться уголек невзрачный негорючим братом, и братом прозрачным. Прокаленный уголек дышать пожарнику помог. Белый воздуха боится, покраснел чтоб сохраниться. Хоть многие вещества превращает в яд, Какой газ утверждает, что он – это не он? Какие химические элементы утверждают, Какой неметалл является лесом? Пахать и стоить, все он может, По прозванью инвалид, но крепок в деле и на вид. Богатырем его не зря назвали, Металл красой своей пленил и первым в топку угодил. Металл зимой не прочен: чума здоровье точит. По прозвищу – богам он друг, Металл в солях – опора многих, Какой элемент вращается вокруг солнца? Какой элемент всегда рад? Какие химические элементы состоят из различных рек? Какой благородный металл состоит из болотных водорослей? Какой химический элемент пригоден В котелке кипит бульон, В печь бросают сухари, Сегодня говорим о НЕЙ Темная энергияНаблюдения далеких сверхновых звезд показывают, что пространство пронизано энергией – той самой темной энергией, которая раздвигает объекты, подобно тому, как два положительных электрических заряда отталкиваются друг от друга. Эта таинственная субстанция, на долю которой приходится более 70% энергетического содержания Вселенной, может быть связана с той энергией, что породила Инфляцию. И все же сегодня ученым практически ничего не известно о том, что такое темная энергия и как она воздействует на материю. Некоторые физики считают, что объяснение этого феномена может потребовать совершенно новых представлений о пространстве и времени. Когда астрономы смотрят в телескоп, они смотрят назад во времени. Они видят галактику Андромеды, ближайшую к нам крупную галактику, не такой, какая она сегодня, а такой, какой она была более 2 миллионов лет назад, потому что именно столько времени потребовалось свету галактики, чтобы пройти через космос к Земле.
Галактика Андромеды – ближайшая Галактика Местной группы Другие галактики находятся гораздо дальше в пространстве и времени. Космический телескоп Hubble способен видеть галактики, которым более 13 миллиардов лет и которые образовались вскоре после Большого взрыва. Были также проведены наблюдения реликтового излучения – слабого свечения, оставшегося после Большого взрыва, которое помогает ученым получить представление о том, какой была ранняя Вселенная, особенно до образования первых звезд. Следующая загадкаЕсли мы посмотрим на историю нашей Вселенной, то обнаружим, что в самом начале не было ни Менделеева, ни его периодической таблицы, ни элементов входящих в нее. Наша Вселенная в момент своего рождения была очень плотной и очень горячей. А при таких условиях сложные структуры просто не могут существовать. Например, при высоких температурах мы можем плавить металлы, то есть можем рушить молекулярную структуру. Повышая температуру, будут разрушаться молекулы на атомы. Атомы также являются составными частицами. Следовательно, повышая температуру дальше мы можем достичь разрушения атомов на отдельные протоны и нейтроны. Повышая температуру еще сильнее, мы продолжим эту матрешку, пока нейтроны и протоны не распадутся на кварки, которые являются фундаментальными частицами и распасться дальше не могут. Поэтому в очень ранней Вселенной не существовало привычного нам вещества. По мере расширения, Вселенная остывала, что давало возможность образовываться более сложным структурам. Естественно, первым появившимся элементом, судя из таблицы Менделеева, стал водород , поскольку водород — это всего-лишь протон . Это произошло в первые секунды после Большого взрыва. Поскольку нейтрон немного тяжелее протона, то он появился немного позднее и немного в меньшем количестве. За первые минуты Вселенная расширилась и остыла настолько, что начали происходить термоядерные реакции, в ходе которых стали появляться элементы от водорода до лития включительно. Однако, лития образовалось настолько мало, что его практически не учитывают. Данный процесс образования первых химических элементов называется первичным нуклеосинтезом . Стоит заметить, что в ходе этого нуклеосинтеза образуется настолько мало лития, что его практически не учитывают, а подсчеты и наблюдения показывают, что Вселенная спустя несколько минут от Большого взрыва на 75% состояла из водорода и почти на 25% из гелия. В таком составе Вселенная будет пребывать еще долгое время, пока спустя 550 млн лет не образуются первые звезды. В звездах происходит постоянный процесс ядерного синтеза . Большую часть времени звезды преобразуют водород в гелий. Поэтому, по причине процессов в звездах, водорода во Вселенной становится все меньше, а гелия все больше. Если плотность и температура звезды имеет достаточное значение, то образовавшийся или имеющийся изначально гелий начинает преобразовываться в более тяжелые элементы. Однако, с продвижением по таблице Менделеева требуются все более экстремальные условия. Экстремальные условия звезда создает сама по себе. Чем тяжелее звезда, тем сильнее она давит сама на себя, тем больше плотность и температура в ее недрах. Следовательно, чем массивнее звезда, тем более тяжелые химические элементы она может производить Наше Солнце является относительно небольшой звездой, поэтому она может производить элементы только до кислорода. К концу своей жизни Солнце станет красным гигантом, а потом станет белым карликом, сбросив красную оболочку, насыщенную тяжелыми элементами, в космос. Это вещество вместе с таким же сброшенным веществом от других звезд скучкуется и впоследствии образует новое поколение звезд со своими планетами с уже конкретным набором химических элементов. Читайте также:
|