Высказывание в логике это

Обновлено: 04.11.2024

Логическое высказывание — утверждение, которому всегда можно поставить в соответствие одно из двух логических значений: ложь (0, ложно, false) или истина (1, истинно, true). Логическое высказывание принято обозначать заглавными латинскими буквами. Высказывательной формой называется логическое высказывание, в котором один из объектов заменён переменной. При подстановке вместо переменной какого-либо значения высказывательная форма превращается в высказывание.

Пример: A(x) = «В городе x идет дождь.» A — высказывательная форма, x — объект.

Отрицание логического высказывания — логическое высказывание, принимающее значение "истинно", если исходное высказывание ложно, и наоборот.

Конъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны.

Дизъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно.

Импликация двух логических высказываний A и B — логическое высказывание, ложное только тогда, когда B ложно, а A истинно.

Равносильность (эквивалентность) двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны.

\forall x A(x)

Кванторное логическое высказывание с квантором всеобщности () — логическое высказывание, истинное только тогда, когда для каждого объекта x из заданной совокупности высказывание A(x) истинно.

\exists x A(x)

Кванторное логическое высказывание с квантором существования () — логическое высказывание, истинное только тогда, когда в заданной совокупности существует объект x, такой, что высказывание A(x) истинно.

См. также

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Логическое высказывание" в других словарях:

деонтическая логика — (от греч. deon долг, правильность) Логика норм, нормативная логика. раздел логики, исследующий логическую структуру и логические связи нормативных высказываний. Анализируя рассуждения, посылками или заключениями которых служат такие высказывания … Словарь терминов логики

Читайте также: