Выражение сторон в прямоугольном треугольнике

Обновлено: 22.12.2024

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c - стороны произвольного треугольника

α , β , γ - противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b - катеты

c - гипотенуза

α , β - острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b - сторона (основание)

a - равные стороны

α - углы при основании

β - угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота- перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется - ортоцентр.

H - высота треугольника

a - сторона, основание

b, c - стороны

β , γ - углы при основании

p - полупериметр, p=(a+b+c)/2

R - радиус описанной окружности

S - площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

5. Формулы высоты прямого угла в прямоугольном треугольнике

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр - точка пересечения высот, совпадает с вершиной прямого угла.

H - высота из прямого угла

a, b - катеты

с - гипотенуза

c 1 , c 2 - отрезки полученные от деления гипотенузы, высотой

α , β - углы при гипотенузе

Формула длины высоты через стороны, ( H ):

Формула длины высоты через гипотенузу и острые углы, ( H ):

Формула длины высоты через катет и угол, ( H ):

Формула длины высоты через составные отрезки гипотенузы , ( H ):

6. Найти длину биссектрисы в треугольнике

L - биссектриса, отрезок |OB|, который делит угол ABC пополам

a, b - стороны треугольника

с - сторона на которую опущена биссектриса

d, e - отрезки полученные делением биссектрисы

γ - угол ABC , разделенный биссектрисой пополам

p - полупериметр, p =(a+b+ c )/2

Длина биссектрисы через две стороны и угол, ( L ):

Длина биссектрисы через полупериметр и стороны, ( L ):

Длина биссектрисы через три стороны, ( L ):

Длина биссектрисы через стороны и отрезки d , e , ( L ):

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.

7. Биссектриса прямоугольного треугольника

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

L - биссектриса, отрезок ME , исходящий из прямого угла (90 град)

a, b - катеты прямоугольного треугольника

с - гипотенуза

α - угол прилежащий к гипотенузе

Формула длины биссектрисы через катеты, ( L ):

Формула длины биссектрисы через гипотенузу и угол, ( L ):

2. Найти по формулам длину биссектрисы из острого угла на катет:

L - биссектриса, отрезок ME , исходящий из острого угла

a, b - катеты прямоугольного треугольника

с - гипотенуза

α , β - углы прилежащие к гипотенузе

Формулы длины биссектрисы через катет и угол, ( L ):

Формула длины биссектрисы через катет и гипотенузу, ( L ):

8. Длина биссектрисы равнобедренного треугольника

L - высота = биссектриса = медиана

a - одинаковые стороны треугольника

b - основание

α - равные углы при основании

β - угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, ( L ):

Формула высоты, биссектрисы и медианы, через стороны, ( L ):

9. Найти медиану биссектрису высоту равностороннего треугольника

Формула для вычисления высоты = биссектрисы = медианы.

В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

L - высота=биссектриса=медиана

a - сторона треугольника

Формула длины высоты, биссектрисы и медианы равностороннего треугольника, ( L ):

10. Найти длину медианы треугольника по формулам

Медиана - отрезок |AO|, который выходит из вершины A и делит противолежащею сторону c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

M - медиана, отрезок |AO|

c - сторона на которую ложится медиана

a, b - стороны треугольника

γ - угол CAB

Формула длины медианы через три стороны, ( M ):

Формула длины медианы через две стороны и угол между ними, ( M ):

11. Длина медианы прямоугольного треугольника

Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c , пополам.

Медиана в прямоугольном треугольнике ( M ), равна, радиусу описанной окружности ( R ).

Читайте также: