Выражение может быть преобразовано к виду

Обновлено: 22.11.2024

Благодаря курсу алгебры, известно, что все выражения требуют преобразования для более удобного решения. Определение целых выражений способствует тому, что для начала выполняются тождественные преобразования. Будем преобразовывать выражение в многочлен. В заключении разберем несколько примеров.

Определение и примеры целых выражений

Определение 1

Целые выражения – это числа, переменные или выражения со сложением или вычитанием, которые записываются в виде степени с натуральным показателем, которые также имеют скобки или деление, отличное от нуля.

Исходя из определения, имеем, что примеры целых выражений: 7 , 0 , − 12 , 7 11 , 2 , 73 , - 3 5 6 и так далее, причем переменные вида a , b , p , q , x , z считают за целые выражения. После их преобразования сумм, разностей, произведений выражения примут вид

x + 1 , 5 · y 3 · 2 · 3 · 7 − 2 · y − 3 , 3 − x · y · z 4 , - 6 7 , 5 · ( 2 · x + 3 · y 2 ) 2 − - ( 1 − x ) · ( 1 + x ) · ( 1 + x 2 )

Если в выражении имеется деление на число, отличное от нуля вида x : 5 + 8 : 2 : 4 или ( x + y ) : 6 , тогда деление может обозначаться при помощи дробной черты, как x + 3 5 - 3 , 2 · x + 2 . При рассмотрении выражений вида x : 5 + 5 : x или 4 + a 2 + 2 · a - 6 a + b + 2 · c видно, что такие выражения не могут быть целыми, так как в первом имеется деление на переменную x , а во втором на выражение с переменной.

Многочлен и одночлен являются целыми выражениями, с которыми встречаемся в школе при работе с рациональными числами. Иначе говоря, целые выражения не включают в себя записи иррациональных дробей. Другое название – это целые иррациональные выражения.

Какие преобразования целых выражений возможны?

Целые выражения рассматриваются при решении как основные тождественные преобразования, раскрытие скобок, группирование, приведение подобных.

Раскрыть скобки и привести подобные слагаемые в 2 · ( a 3 + 3 · a · b − 2 · a ) − 2 · a 3 − ( 5 · a · b − 6 · a + b ) .

Для начала необходимо применить правило раскрытия скобок. Получим выражение вида 2 · ( a 3 + 3 · a · b − 2 · a ) − 2 · a 3 − ( 5 · a · b − 6 · a + b ) = = 2 · a 3 + 2 · 3 · a · b + 2 · ( − 2 · a ) − 2 · a 3 − 5 · a · b + 6 · a − b = = 2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b

После чего можем привести подобные слагаемые:

2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b = = ( 2 · a 3 − 2 · a 3 ) + ( 6 · a · b − 5 · a · b ) + ( − 4 · a + 6 · a ) − b = = 0 + a · b + 2 · a − b = a · b + 2 · a − b .

После их приведения получаем многочлен вида a · b + 2 · a − b .

Ответ: 2 · ( a 3 + 3 · a · b − 2 · a ) − 2 · a 3 − ( 5 · a · b − 6 · a + b ) = a · b + 2 · a − b .

Пример 2

Произвести преобразования ( x - 1 ) : 2 3 + 2 · ( x 2 + 1 ) : 3 : 7 .

Имеющееся деление можно заменять умножением, но на обратное число. Тогда необходимо выполнить преобразования, после которых выражение примет вид ( x - 1 ) · 3 2 + 2 · ( x 2 + 1 ) · 1 3 · 1 7 . Теперь следует заняться приведением подобных слагаемых. Получим, что

( x - 1 ) · 3 2 + 2 · ( x 2 + 1 ) · 1 3 · 1 7 = 3 2 · ( x - 1 ) + 2 21 · x 2 + 1 = = 3 2 · x - 3 2 + 2 21 · x 2 + 2 21 = 2 21 · x 2 + 3 2 · x - 59 42 = 2 21 · x 2 + 1 1 2 · x - 1 17 42

Ответ: ( x - 1 ) : 2 3 + 2 · ( x 2 + 1 ) : 3 : 7 = 2 21 · x 2 + 1 1 2 · x - 1 17 42 .

Пример 3

Представить выражение 6 · x 2 · y + 18 · x · y − 6 · y − ( x 2 + 3 · x − 1 ) · ( x 3 + 4 · x ) в виде произведения.

Рассмотрев выражение, видно, что первые три слагаемые имеют общий множитель вида 6 · y , который следует вынести за скобки во время преобразования. Тогда получим, что 6 · x 2 · y + 18 · x · y − 6 · y − ( x 2 + 3 · x − 1 ) · ( x 3 + 4 · x ) = = 6 · y · ( x 2 + 3 · x − 1 ) − ( x 2 + 3 · x − 1 ) · ( x 3 + 4 · x )

Видно, что получили разность двух выражений вида 6 · y · ( x 2 + 3 · x − 1 ) и ( x 2 + 3 · x − 1 ) · ( x 3 + 4 · x ) с общим множителем x 2 + 3 · x − 1 , который необходимо вынести за скобки. Получим, что

6 · y · ( x 2 + 3 · x − 1 ) − ( x 2 + 3 · x − 1 ) · ( x 3 + 4 · x ) = = ( x 2 + 3 · x − 1 ) · ( 6 · y − ( x 3 + 4 · x ) )

Раскрыв скобки, имеем выражение вида ( x 2 + 3 · x − 1 ) · ( 6 · y − x 3 − 4 · x ) , которое необходимо было найти по условию.

Ответ: 6 · x 2 · y + 18 · x · y − 6 · y − ( x 2 + 3 · x − 1 ) · ( x 3 + 4 · x ) = = ( x 2 + 3 · x − 1 ) · ( 6 · y − x 3 − 4 · x )

Нужна помощь преподавателя? Опиши задание — и наши эксперты тебе помогут! Описать задание

Тождественные преобразования требуют строгое выполнение порядка действий.

Преобразовать выражение ( 3 · 2 − 6 2 : 9 ) 3 · ( x 2 ) 4 + 4 · x : 8 .

Вы первую очередь выполняются действия в скобках. Тогда имеем, что 3 · 2 − 6 2 : 9 = 3 · 2 − 3 6 : 9 = 6 − 4 = 2 . После преобразований выражение принимает вид 2 3 · ( x 2 ) 4 + 4 · x : 8 . Известно, что 2 3 = 8 и ( x 2 ) 4 = x 2 · 4 = x 8 , тогда можно прийти к выражению вида 8 · x 8 + 4 · x : 8 . Второе слагаемое требует замены деления на умножение из 4 · x : 8 . Сгруппировав множители, получаем, что

8 · x 8 + 4 · x : 8 = 8 · x 8 + 4 · x · 1 8 = 8 · x 8 + 4 · 1 8 · x = 8 · x 8 + 1 2 · x

Ответ: ( 3 · 2 − 6 2 : 9 ) 3 · ( x 2 ) 4 + 4 · x : 8 = 8 · x 8 + 1 2 · x .

Преобразование в многочлен

Большинство случаев преобразования целых выражений – это представление в виде многочлена. Любое выражение можно представить в виде многочлена. Любое выражение может быть рассмотрено как многочлены, соединенные арифметическими знаками. Любое действие над многочленами в итоге дает многочлен.

Для того, чтобы выражение было представлено в виде многочлена, необходимо выполнять все действия с многочленами, согласно алгоритму.

Представить в виде многочлена 2 · ( 2 · x 3 − 1 ) + ( 2 · x − 1 ) 2 · ( 3 − x ) + ( 4 · x − x · ( 15 · x + 1 ) ) .

В данном выражение начать преобразования с выражения вида 4 · x − x · ( 15 · x + 1 ) , причем по правилу в начале выполнив умножение или деление, после чего сложение или вычитание. Умножим – x на 15 · x + 1 , тогда получим 4 · x − x · ( 15 · x + 1 ) = 4 · x − 15 · x 2 − x = ( 4 · x − x ) − 15 · x 2 = 3 · x − 15 · x 2 . Заданное выражение примет вид 2 · ( 2 · x 3 − 1 ) + ( 2 · x − 1 ) 2 · ( 3 − x ) + ( 3 · x − 15 · x 2 ) .

Далее необходимо произвести возведение во 2 степень многочлена 2 · x − 1 , получим выражение вида ( 2 · x − 1 ) 2 = ( 2 · x − 1 ) · ( 2 · x − 1 ) = 4 · x 2 + 2 · x · ( − 1 ) − 1 · 2 · x − 1 · ( − 1 ) = = 4 · x 2 − 4 · x + 1

Теперь можно перейти к виду 2 · ( 2 · x 3 − 1 ) + ( 4 · x 2 − 4 · x + 1 ) · ( 3 − x ) + ( 3 · x − 15 · x 2 ) .

Разберем умножение. Видно, что 2 · ( 2 · x 3 − 1 ) = 4 · x 3 − 2 и ( 4 · x 2 − 4 · x + 1 ) · ( 3 − x ) = 12 · x 2 − 4 · x 3 − 12 · x + 4 · x 2 + 3 − x = = 16 · x 2 − 4 · x 3 − 13 · x + 3

тогда можно сделать переход к выражению вида ( 4 · x 3 − 2 ) + ( 16 · x 2 − 4 · x 3 − 13 · x + 3 ) + ( 3 · x − 15 · x 2 ) .

Выполняем сложение, после чего придем к выражению:

( 4 · x 3 − 2 ) + ( 16 · x 2 − 4 · x 3 − 13 · x + 3 ) + ( 3 · x − 15 · x 2 ) = = 4 · x 3 − 2 + 16 · x 2 − 4 · x 3 − 13 · x + 3 + 3 · x − 15 · x 2 = = ( 4 · x 3 − 4 · x 3 ) + ( 16 · x 2 − 15 · x 2 ) + ( − 13 · x + 3 · x ) + ( − 2 + 3 ) = = 0 + x 2 − 10 · x + 1 = x 2 − 10 · x + 1 .

Отсюда следует, что исходное выражение имеет вид x 2 − 10 · x + 1 .

Ответ: 2 · ( 2 · x 3 − 1 ) + ( 2 · x − 1 ) 2 · ( 3 − x ) + ( 4 · x − x · ( 15 · x + 1 ) ) = x 2 − 10 · x + 1 .

Умножение и возведение в степень многочлена говорит о том, что необходимо использовать формулы сокращенного умножения для ускорения процесса преобразования. Это способствует тому, что действия будут выполнены рационально и правильно.

Преобразовать 4 · ( 2 · m + n ) 2 + ( m − 2 · n ) · ( m + 2 · n ) .

Из формулы квадрата получим, что ( 2 · m + n ) 2 = ( 2 · m ) 2 + 2 · ( 2 · m ) · n + n 2 = 4 · m 2 + 4 · m · n + n 2 , тогда произведение ( m − 2 · n ) · ( m + 2 · n ) равняется разности квадратов m и 2 · n , таким образом, равняется m 2 − 4 · n 2 . Получим, что исходное выражение примет вид 4 · ( 2 · m + n ) 2 + ( m − 2 · n ) · ( m + 2 · n ) = 4 · ( 4 · m 2 + 4 · m · n + n 2 ) + ( m 2 − 4 · n 2 ) = = 16 · m 2 + 16 · m · n + 4 · n 2 + m 2 − 4 · n 2 = 17 · m 2 + 16 · m · n

Ответ: 4 · ( 2 · m + n ) 2 + ( m − 2 · n ) · ( m + 2 · n ) = 17 · m 2 + 16 · m · n .

Чтобы преобразование не было слишком длинным, необходимо заданное выражение приводить к стандартному виду.

Упростить выражение вида ( 2 · a · ( − 3 ) · a 2 · b ) · ( 2 · a + 5 · b 2 ) + a · b · ( a 2 + 1 + a 2 ) · ( 6 · a + 15 · b 2 ) + ( 5 · a · b · ( − 3 ) · b 2 )

Чаще всего многочлены и одночлены даются не стандартного вида, поэтому приходится выполнять преобразования. Следует преобразовать, чтобы получить выражение вида − 6 · a 3 · b · ( 2 · a + 5 · b 2 ) + a · b · ( 2 · a 2 + 1 ) · ( 6 · a + 15 · b 2 ) − 15 · a · b 3 . Для того чтобы привести подобные, необходимо предварительно произвести умножение по правилам преобразования сложного выражения. Получаем выражение вида

− 6 · a 3 · b · ( 2 · a + 5 · b 2 ) + a · b · ( 2 · a 2 + 1 ) · ( 6 · a + 15 · b 2 ) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + ( 2 · a 3 · b + a · b ) · ( 6 · a + 15 · b 2 ) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + 12 · a 4 · b + 30 · a 3 · b 3 + 6 · a 2 · b + 15 · a · b 3 − 15 · a · b 3 = = ( − 12 · a 4 · b + 12 · a 4 · b ) + ( − 30 · a 3 · b 3 + 30 · a 3 · b 3 ) + 6 · a 2 · b + ( 15 · a · b 3 − 15 · a · b 3 ) = 6 · a 2 · b

Ответ: ( 2 · a · ( − 3 ) · a 2 · b ) · ( 2 · a + 5 · b 2 ) + a · b · ( a 2 + 1 + a 2 ) · ( 6 · a + 15 · b 2 ) + + ( 5 · a · b · ( − 3 ) · b 2 ) = 6 · a 2 · b

Читайте также: