Выражение для разности потенциалов между плоскостями заряженными разноименно
Обновлено: 22.12.2024
Рассмотрим несколько примеров вычисления разности потенциалов между точками поля, созданного некоторыми заряженными телами.
Разность потенциалов между точками поля, образованного двумя бесконечными заряженными плоскостями
Мы показали, что напряженность связана с потенциалом
Теперь, чтобы получить выражение для потенциала между плоскостями, проинтегрируем выражение (3.7.1):
или . | (3.7.2) |
При x1 = 0 и x2 = d . | (3.7.3) |
Разность потенциалов между точками поля,образованного бесконечно длинной цилиндрической поверхностью
В п. 2.5 с помощью теоремы Остроградского-Гаусса мы показали, что, т.к. , то (см. рис. 3.6)
Т.к. то , отсюда найдем разность потенциалов в произвольных точках 1 и 2:
На рисунке 3.6 изображена зависимость напряженности E и потенциала от r. (Здесь и далее E – изображена сплошной линией, а – пунктирной).
Разность потенциалов между обкладками цилиндрического конденсатора
В п. 2.5. мы нашли, что (рис. 3.7)
Отсюда так же, как и в предыдущем случае, разность потенциалов будет равна:
На рисунке 3.7 изображена зависимость напряженности E и потенциала от r.
Разность потенциалов между точками поля, образованного заряженной сферой (пустотелой)
Напряженность поля сферы (рис. 3.8) определяется формулой: .
Разность потенциалов внутри диэлектрического заряженного шара
Имеем диэлектрический шар (рис. 3.9), заряженный с объемной плотностью
В п. 2.5 с помощью теоремы Остроградского–Гаусса мы нашли, что внутри шара .
Теперь найдем разность потенциалов внутри шара:
Отсюда находим потенциал шара:
Из полученных соотношений можно сделать следующие выводы.
Напряженность поля в вакууме изменяется скачком при переходе через заряженную поверхность.
Читайте также: