Выражение для разности потенциалов между плоскостями заряженными разноименно

Обновлено: 22.12.2024

Рассмотрим несколько примеров вычисления разности потенциалов между точками поля, созданного некоторыми заряженными телами.

Разность потенциалов между точками поля, образованного двумя бесконечными заряженными плоскостями

Мы показали, что напряженность связана с потенциалом

Теперь, чтобы получить выражение для потенциала между плоскостями, проинтегрируем выражение (3.7.1):

или . (3.7.2)
При x1 = 0 и x2 = d . (3.7.3)

Разность потенциалов между точками поля,образованного бесконечно длинной цилиндрической поверхностью

В п. 2.5 с помощью теоремы Остроградского-Гаусса мы показали, что, т.к. , то (см. рис. 3.6)

Т.к. то , отсюда найдем разность потенциалов в произвольных точках 1 и 2:

На рисунке 3.6 изображена зависимость напряженности E и потенциала от r. (Здесь и далее E – изображена сплошной линией, а – пунктирной).

Разность потенциалов между обкладками цилиндрического конденсатора

В п. 2.5. мы нашли, что (рис. 3.7)

Отсюда так же, как и в предыдущем случае, разность потенциалов будет равна:

На рисунке 3.7 изображена зависимость напряженности E и потенциала от r.

Разность потенциалов между точками поля, образованного заряженной сферой (пустотелой)

Напряженность поля сферы (рис. 3.8) определяется формулой: .

Разность потенциалов внутри диэлектрического заряженного шара

Имеем диэлектрический шар (рис. 3.9), заряженный с объемной плотностью

В п. 2.5 с помощью теоремы Остроградского–Гаусса мы нашли, что внутри шара .

Теперь найдем разность потенциалов внутри шара:

Отсюда находим потенциал шара:

Из полученных соотношений можно сделать следующие выводы.

Напряженность поля в вакууме изменяется скачком при переходе через заряженную поверхность.

Читайте также: