Выражение для критерия крайнего оптимизма

Обновлено: 04.11.2024

Выбираем из (25; 35.5; 34) максимальный элемент max=35.5
Вывод: выбираем стратегию N=2.
Критерий Вальда.
По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т.е.
a = max(min aij)
Критерий Вальда ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.

Выбираем из (10; 15; 20) максимальный элемент max=20
Вывод: выбираем стратегию N=3.
Критерий Севиджа.
Критерий минимального риска Севиджа рекомендует выбирать в качестве оптимальной стратегии ту, при которой величина максимального риска минимизируется в наихудших условиях, т.е. обеспечивается:
a = min(max rij)
Критерий Сэвиджа ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
Находим матрицу рисков.
Риск – мера несоответствия между разными возможными результатами принятия определенных стратегий. Максимальный выигрыш в j-м столбце bj = max(aij) характеризует благоприятность состояния природы.
1. Рассчитываем 1-й столбец матрицы рисков.
r11 = 50 - 40 = 10; r21 = 50 - 50 = 0; r31 = 50 - 20 = 30;
2. Рассчитываем 2-й столбец матрицы рисков.
r12 = 60 - 10 = 50; r22 = 60 - 60 = 0; r32 = 60 - 35 = 25;
3. Рассчитываем 3-й столбец матрицы рисков.
r13 = 40 - 20 = 20; r23 = 40 - 15 = 25; r33 = 40 - 40 = 0;
4. Рассчитываем 4-й столбец матрицы рисков.
r14 = 50 - 30 = 20; r24 = 50 - 25 = 25; r34 = 50 - 50 = 0;

Читайте также: