В моем классе 30 человек фраза ровно 15 человек из них ежедневно делают зарядку означает
Обновлено: 21.11.2024
Комбинаторика для начинающих. МФТИ. Разбор ряда задач недель 2-3
Эти недели были о тех самых четырёх формулах сочетания и размещения.
Жених и невеста выбирают трехъярусный свадебный торт. На выбор имеются 5 типов ярусов (бисквитный, йогуртовый, чизкейк и т.д.). Сколько различных тортов может предложить кондитер, если бисквитных ярусов может быть не больше двух, а ярусов любого другого типа не больше одного?
Ответ: 72.
Решение: используем правило сложения и суммируем результаты по трём вариантам - бисквитных ярусов нет, он один, их два.
Если их нет, мы просто размещаем по трём слоям четыре типа. Нам нельзя иметь более одного одинакового слоя из оставшихся. Это размещение без повторений из 4 по 3. Равно 24.
Один ярус может быть занят 3 способами, кроме того, каждому варианту соответствует размещение из 4 уже по 2. Это 3*12=36.
Наконец, бисквитных ярусов два. Они так же могут быть в составе торта 3 способами (чисто интуитивно 1-2, 2-3, 3-1) и им соответствует размещение уже из 4 по 1. 3*4=12.
Итого 24+36+12=72.
У королевы есть 12 одинаковых зеркал. Сколькими способами их можно повесить в 8 разных залах замка так, чтобы в каждом зале было хотя бы одно зеркало?
Ответ: 330.
Решение: внимательно прочитайте - ХОТЯ БЫ одно зеркало. То есть, или одно или два. Здесь нельзя вслепую выбрать сочетание (а порядок не важен и количество зеркал ограничено) 8 из 12. Нет.
Залов меньше, чем зеркал. Очевидно, будут залы с не одним зеркалом.
"Первые восемь" зеркал мы уже, давайте считать, повесили. Уточнение - да, залы разные, но сами зеркала одинаковые. Эти восемь взяли и повесили и, как потом не меняй их местами, суть не меняется.
А вот оставшиеся зеркала это уже другой вопрос. Их 4.
У нас есть 4 оставшихся зеркала. И 8 залов. Мы не обязаны раскидывать эти зеркала равномерно или через раз или ещё как. Мы вообще можем их все отнести в один зал. Это тонкий момент - если мы эти четыре зеркала можем отнести в один зал, то этот зал ПОВТОРЯЕТСЯ. Но при этом порядок тут не имеет значения.
Как вы уже догадываетесь - это сочетание с повторениями. Надо выбрать, в какой из восьми залов нести четыре зеркала. То есть, тут мы выбираем, по сути зал. Они разные, а зеркала одинаковые. Стало быть, это сочетание из 8 по 4 с повторами.
Сколькими способами в течение 5 дней можно выбирать на дежурство по 4 ученика из класса в 20 человек так, чтобы каждый день состав дежурных был разным?
Ответ: скрин.
Решение: легче, чем кажется. Без привязки к дням - как можно выбрать дежурных? Сочетание без повторений из 20 по 4. А дальше? А дальше просто из каждого нового дня вычитаем вариант, который был вчера. А затем это все умножить, ведь надо знать количество способов всего. И обратите внимание, как ловко сочетания тут свернулись в размещения.
Читайте также: