Шим с точной фразой

Обновлено: 21.11.2024

Представь себе тяжеленный маховик который ты можешь вращать двигателем. Причем двигатель ты можешь либо включить, либо выключить. Если включить его постоянно, то маховик раскрутится до максимального значения и так и будет крутиться. Если выключить, то остановится за счет сил трения.

Меня скважность (отношение длительности периода к длительности импульса) можно плавно менять эту площадь, а значит и напряжение на выходе. Таким образом если на выходе сплошные 1, то на выходе будет напряжение высокого уровня, в случае моего робота, на выходе из моста L293 это 12 вольт, если нули, то ноль. А если 50% времени будет высокий уровень, а 50% низкий то 6 вольт. Интегрирующей цепочкой тут будет служить масса якоря двигателя, обладающего довольно большой инерцией.


В качестве сглаживающей интегрирующей цепи в ШИМ может быть применена обычная RC цепочка:

Так, принцип понятен, приступаем к реализации.
ШИМ сигнал можно сварганить и на операционных усилителях и на микроконтроллере. Причем последние умеют это делать просто мастерски, благо все у них для этого уже есть.


Аппаратный ШИМ
В случае ATMega16 проще всего сделать на его ШИМ генераторе, который встроен в таймеры. Причем в первом таймере у нас целых два канала. Так что без особого напряга ATmega16 может реализовать одновременно четыре канала ШИМ.


Как это реализовано
У таймера есть особый регистр сравнения OCR**. Когда значение в счётном регистре таймера достигнает значения находящегося в регистре сравнения, то могут возникнуть следующие аппаратные события:

  • Прерывание по совпадению
  • Изменение состояния внешнего выхода сравнения OC**.


Выходы сравнения выведены наружу, на выводы микроконтроллера


На демоплате Pinboard к этим выводам как раз подключены светодиоды. А если поставить джамперы вдоль, в сторону надписи RC то к выводу ШИМ будет подключена интегрирующая цепочка.


Для Pinboard II разница в подключении невелика. Джамперы тут сгруппированы в один блок. А светодиоды и RC цепочки сгруппированы в левом верхнем углу платы.

Предположим, что мы настроили наш ШИМ генератор так, чтобы когда значение в счетном регистре больше чем в регистре сравнения, то на выходе у нас 1, а когда меньше, то 0.


Что при этом произойдет? Таймер будет считать как ему и положено, от нуля до 256, с частотой которую мы настроим битами предделителя таймера. После переполнения сбрасывается в 0 и продолжает заново.


Как видишь, на выходе появляются импульсы. А если мы попробуем увеличить значение в регистре сравнения, то ширина импульсов станет уже.

Так что меняя значение в регистре сравнения можно менять скважность ШИМ сигнала. А если пропустить этот ШИМ сигнал через сглаживающую RC цепочку (интегратор) то получим аналоговый сигнал.


У таймера может быть сколько угодно регистров сравнения. Зависит от модели МК и типа таймера. Например, у Атмега16


Самих режимов ШИМ существует несколько:


Fast PWM
В этом режиме счетчик считает от нуля до 255, после достижения переполнения сбрасывается в нуль и счет начинается снова. Когда значение в счетчике достигает значения регистра сравнения, то соответствующий ему вывод ОСхх сбрасыватся в ноль. При обнулении счетчика этот вывод устанавливается в 1. И все!


Еще есть возможность повысить разрешение, сделав счет 8, 9, 10 разрядным (если разрядность таймера позволяет), но надо учитывать, что повышение разрядности, вместе с повышением дискретности выходного аналогового сигнала, резко снижает частоту ШИМ.

Phase Correct PWM
ШИМ с точной фазой. Работает похоже, но тут счетчик считает несколько по другому. Сначала от 0 до 255, потом от 255 до 0. Вывод OCxx при первом совпадении сбрасывается, при втором устанавливается.
Но частота ШИМ при этом падает вдвое, изза большего периода. Основное его предназначение, делать многофазные ШИМ сигналы, например, трехфазную синусоиду. Чтобы при изменении скважности не сбивался угол фазового сдвига между двумя ШИМ сигналами. Т.е. центры импульсов в разных каналах и на разной скважности будут совпадать.


Еще одна тонкость:
Чтобы не было кривых импульсов, то в регистр сравнения любое значение попадает через буфферный регистр и заносится только тогда, когда значение в счетчике достигнет максимума. Т.е. к началу нового периода ШИМ импульса.


В результате, на выходе получаются импульсы всегда одинаковой скважности, но разной частоты. А чаще всего этот режим применяется когда надо таймером отсчитывать периоды (и генерить прерывание) с заданной точностью.


Например, надо нам прерывание каждую миллисекунду. И чтобы вот точно. Как это реализовать проще? Через Режим СТС! Пусть у нас частота 8Мгц.


Прескалер будет равен 64, таким образом, частота тиков таймера составит 125000 Гц. А нам надо прерывание с частотой 1000Гц. Поэтому настраиваем прерывание по совпадению с числом 125.


Вот вам и точная тикалка.


Нет, конечно, можно и вручную. Через переполнение, т.е. дотикал до переполнения, загрузил в обработчике прерывания заново нужные значение TCNTх=255-125, сделал нужные полезные дела и снова тикать до переполнения. Но ведь через СТС красивей! :)


Аппаратура
А теперь контрольные регистры, которыми все это безобразие задается и программируется. Опишу на примере Двухканального FastPWM на таймере 1. В других все похоже. Даташит в зубы и вперед.


Итак, тут правят бал регистры TCCR1A и TCCR1B. Гы, кто бы сомневался %)


Распишу их по битам.
Регистр TCCR1A, биты COM1A1:COM1A0 и COM1B1:COM1B0. Эта братия определяет поведение вывода сравнения OC1A и OC1B соответственно.


COMxx1COMxx0Режим работы выхода
00вывод отцеплен от регистра сравнения и не меняется никак.
01Поведение вывода зависит от режима заданного в WGM, различается для разных режимов (FastPWM, FC PWM, Compar out) и разных МК, надо сверяться с даташитом.
10прямой ШИМ (сброс при совпадении и установка при обнулении счета)
11обратный ШИМ (сброс при обнулении и установка при совпадении)


Регистр TCCR1A, биты WGM11 и WGM10 вместе с битами WGM12 и WGM13, находящимися в регистре TCCR1B задают режим работы генератора.

WGM13WGM12WGM11WGM10Режим работы
0101Fast PWM 8 бит
0110Fast PWM 9 бит
0111Fast PWM 10 бит


Другие комбинации битов WGM задают режимы Phase Correct PWM и CTC (сброс OCxx при совпадении). Если интересно, то читай даташит, я для себя много интересного там не нашел, кроме Phase Correct PWM. И то мне сейчас важней скорость, а не точность фазы :)


После остается только запустить таймер, установив бит CS10 (подсчет тактовых импульсов с делителем 1:1)


Пример кода:


Попробуем поиграться яркостью светодиодов с помощью ШИМ сигналов. Подключи джамперы, чтобы запитать светодиоды LED1 и LED2



Для версии Pinboard II все аналогично, с поправкой на другое расположение джамперов:



Теперь все готово, можно писать код. Вначале в раздел инициализации устройств добавляю настройку таймера на запуск ШИМ и подготовку выводов.

;FastPWM Init SETB DDRD,4,R16 ; DDRD.4 = 1 Порты на выход SETB DDRD,5,R16 ; DDRD.5 = 1 ; Выставляем для обоих каналов ШИМ режим вывода ОС** сброс при совпадении. ; COM1A = 10 и COM1B = 10 ; Также ставим режим FAST PWM 8bit (таймер 16ти разрядный и допускает ; большую разрядность ШИМ сигнала. Вплоть до 10 бит. WGM = 0101 ; Осталось только запустить таймер на частоте МК CS = 001 OUTI TCCR1A,2<<COM1A0|2<<COM1B0|0<<WGM11|1<<WGM10 OUTI TCCR1B,0<<WGM13|1<<WGM12|1<<CS10


Готово! Теперь ШИМ таймера1 генерит сигнал на выходаx OC1А и OC1B


Закинем в регистры сравнения первого и второго канала число 255/3=85 и 255/2 = 128
Так как ШИМ у нас 8ми разрядный, то заброс идет только в младший разряд. Старший же остается нулем. Но регистры сравнения тут у нас 16ти разрядные поэтому грузить надо оба байта сразу. Не забыв запретить прерывания (это важно. ибо атомарный доступ)

CLI OUTI OCR1AH,0 OUTI OCR1AL,85 OUTI OCR1BH,0 OUTI OCR1BL,128 SEI


Как мы и запланировали. С первого канала длительность импульса в 1/3 периода, а со второго в 1/2
Ну и светодиоды горят с разной яркостью. Один ярче, другой тусклей. Меняя значение в регистрах OCR*** мы можем менять скважность.


Давай сделаем так, чтобы светодиод плавно менял свою яркость от нуля до максимума. Как помнишь, у нас там была программа, с мигающем по таймеру0 светодиодом. Немного ее подправим, сделаем так, чтобы по таймеру не светодиод мигал, а менялось значение в регистрах сравнения OCR1A и OCR1B. Причем меняться оно будет в разные стороны :)

; Main ========================================================= Main: LDS R16,TCNT ; Грузим числа в регистры LDS R17,TCNT+1 CPI R16,0x10 ; Сравниванем побайтно выдержку BRCS NoMatch CPI R17,0x01 ; Выдержку сделали поменьше = 0x0110 BRCS NoMatch ; Если совпало то делаем экшн Match: CLI ; Запрет прерываний, т.к. атомарный доступ ; Меняем первый канал ; Особенность 16ти разрядных регистров в том, что их надо правильно читать и записывать. ; Читают вначале младший, потом старший байты. Так надо, чтобы младший не успел измениться ; (он ведь может тикать по таймеру) пока читают первым старший. Укладывают их в обратном ; порядке. Сначала старший, потом младший. Правда для регистров OCR это не имеет большой ; разницы -- они статичные, а вот для TCNT очень даже! IN R16,OCR1AL ; Достали первый байт сравнения IN R17,OCR1AH ; он 16ти разрядный, но старший байт будет 0 INC R16 ; Увеличили OUT OCR1AH,R17 ; И сунули их обратно OUT OCR1AL,R16 ; Меняем второй канал IN R16,OCR1BL ; Достали второй байт сравнения IN R17,OCR1BH ; он 16ти разрядный, но старший байт будет 0 DEC R16 ; Уменьшили OUT OCR1BH,R17 ; И сунули их обратно OUT OCR1BL,R16 SEI ; Конец атомарного доступа ; Теперь надо обнулить счетчик, иначе за эту же итерацию главного цикла ; Мы сюда попадем еще не один раз -- таймер то не успеет натикать 255 значений ; чтобы число в первых двух байтах счетчика изменилось. CLR R16 ; Нам нужен ноль CLI ; Таймер меняется и в прерывании. Нужен ; атомарный доступ. Запрещаем прерывания OUT TCNT0,R16 ; Ноль в счетный регистр таймера STS TCNT,R16 ; Ноль в первый байт счетчика в RAM STS TCNT+1,R16 ; Ноль в второй байт счетчика в RAM STS TCNT+2,R16 ; Ноль в третий байт счетчика в RAM STS TCNT+3,R16 ; Ноль в первый байт счетчика в RAM SEI ; Разрешаем прерывания. ; Не совпало - не делаем :) NoMatch: NOP INCM CCNT ; Шарманка вращается дальше, вхолостую JMP Main


А теперь давайте включим режим с точной фазой (WGM = 0001) и посмотрим на то как будет меняться скважность.

  • Отключаем выводы OCxx от регистра сравнения.
  • Добавляем два обработчика прерывания на сравнение и на переполнение. В прерывании по сравнению сбрасываем нужный бит, в прерывании по переполнению счетчика устанавливаем.

;FastPWM Init на прерываниях ; ШИМ будет на выводах 3 и 6 порта D SETB DDRD,3,R16 ; DDRD.3 = 1 Порты на выход SETB DDRD,6,R16 ; DDRD.6 = 1 ; Выставляем для обоих каналов ШИМ режим вывода ОС** выключеным. ; COM1A = 00 и COM1B = 00 ; Также ставим режим FAST PWM 8bit (таймер 16ти разрядный и допускает ; большую разрядность ШИМ сигнала. Вплоть до 10 бит. WGM = 0101 ; Осталось только запустить таймер на частоте МК CS = 001 OUTI TCCR1A,0<<COM1A0|0<<COM1B0|0<<WGM11|1<<WGM10 OUTI TCCR1B,0<<WGM13|1<<WGM12|1<<CS10 SETB TIMSK,OCIE1A,R16 ; Включаем прерывание по сравнению А SETB TIMSK,OCIE1B,R16 ; Включаем прерывание по сравнению Б SETB TIMSK,TOIE1,R16 ; Включаем прерывание по переполнению Т1 ; Причем в режиме WGM=1010 переполнение ; будет на FF т.е. таймер работает как ; 8ми разрядный.


Осталось только прописать обработчики и вектора:

Почему я в этих обработчиках не сохраняю регистры и SREG? А незачем! Команды SBI меняют только конкретные биты (а больше нам и не надо), не влияя на флаги и другие регистры.

И получили полную херню. Т.е. ШИМ как бы есть, но почему то адово мерцает. А на осциллографе в этот момент полный треш. Кто виноват? Видимо конфликт прерываний. Осталось только выяснить где именно. Сейчас я вам дам практический пример реалтаймовой отладки :)


Итак, что мы имеем:

; Interrupts ============================================== Timer0_OV: PUSHF PUSH R17 PUSH R18 PUSH R19 INCM TCNT POP R19 POP R18 POP R17 POPF RETI ; Установка бита ШИМ канала А Timer1_OCA: SBI PORTD,3 RETI ; Установка бита ШИМ канала Б Timer1_OCB: SBI PORTD,6 RETI ;Сброс бита ШИМ канала А и Б Timer1_OVF: CBI PORTD,3 CBI PORTD,6 ;DEBUG PIN BEGIN --------------- PUSHF INVBM PORTD,7 POPF ;DEBUG PIN END ----------------- RETI

Инверсия бита невозможна без логических операций, поэтому надо сохранять флаги.


А вот Timer0_OV делает довольно мощный прогруз стека и еще вычитает четырехбайтную переменную. Т.е. тактов на 20 может задержать обработчик установки бита Timer1_OC* от того и вылазят такие зверские дребезги.


Давайте проверим эту идею. Разрешим прерывания в обработчике Timer0_0V

; Interrupts ============================================== Timer0_OV: SEI PUSHF PUSH R17 PUSH R18 PUSH R19 INCM TCNT POP R19 POP R18 POP R17 POPF RETI ; Установка бита ШИМ канала А Timer1_OCA: SBI PORTD,3 RETI ; Установка бита ШИМ канала Б Timer1_OCB: SBI PORTD,6 RETI ;Сброс бита ШИМ канала А и Б Timer1_OVF: CBI PORTD,3 CBI PORTD,6 RETI

Картина сразу исправилась. Теперь более важное (для нас важное) прерывание задвигает обработчик от Таймера 0. Но тут надо просекать возможные риски:

  • Более глубокий прогруз стека
  • Нарушается атомарный доступ к четырехбайтной переменной TCNT, поэтому если бы у нас было еще какое-то прерывание, меняющее TCNT то его надо было бы запрещать локально. Иначе бы мы получили такой трешняк, что проще заново прогу переписать, чем это отладить

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

Читайте также: