Руководство по выражению неопределенности измерений 2018 еврохим

Обновлено: 22.12.2024

Руководство по выражению неопределенности измерения

Трансформирование распределений с использованием метода Монте-Карло

Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 1. Propagation of distributions using a Monte-Carlo method

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 125 "Статистические методы в управлении качеством продукции" на основе собственного перевода на русский язык англоязычной версии международного документа, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 июля 2017 г. N 101-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

Международный документ разработан Рабочей группой WG 1 Объединенного комитета по руководствам в метрологии JCGM.

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Федеральном агентстве по техническому регулированию и метрологии.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных докуметов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Июль 2018 г.

Введение

0.1 Общие сведения

a) линеаризация модели не обеспечивает ее адекватного представления;

b) распределение выходной величины, например, вследствие своей выраженной асимметрии не может быть описано нормальным распределением (распределением Гаусса) или масштабированным смещенным -распределением.

В случае а) оценки выходной величины и соответствующей стандартной неопределенности, полученные в соответствии с GUM, могут оказаться недостоверными. В случае b) при оценке неопределенности могут быть получены недостоверные интервалы охвата (обобщение понятия расширенной неопределенности, используемого в GUM).

1) наилучших оценок входных величин;

2) стандартных неопределенностей оценок входных величин;

3) числа степеней свободы для стандартных неопределенностей оценок входных величин;

4) всех ненулевых ковариаций пар этих оценок.

Кроме того, полученная плотность распределения вероятностей выходной величины позволяет определить для выходной величины интервал охвата с заданной вероятностью.

Наилучшие оценки входных величин, их стандартные неопределенности, ковариации и числа степеней свободы представляют собой ту информацию, которая необходима для применения метода расчета неопределенности по GUM. Метод, устанавливаемый настоящим стандартом, основан на использовании плотностей распределения вероятностей входных величин для последующего расчета плотности распределения вероятностей выходной величины.

В то время как для применения способа оценивания неопределенности по GUM существуют некоторые ограничения, трансформирование распределений всегда позволяет получить плотность распределения вероятностей выходной величины на основе распределений входных величин. Плотность распределения вероятностей выходной величины представляет собой выражение знания об этой величине, полученного на основе знаний о входных величинах в виде сопоставленных им распределений. После получения плотности распределения вероятностей выходной величины могут быть определены математическое ожидание, используемое в качестве оценки выходной величины, и стандартное отклонение, используемое в качестве стандартной неопределенности этой оценки. Кроме того, плотность распределения вероятностей может быть использована для получения интервала охвата для выходной величины, соответствующего заданной вероятности.

Использование плотностей распределения вероятностей в соответствии с настоящим стандартом в основном согласуется с принципами GUM. Плотность распределения вероятностей величины отражает состояние знаний об этой величине, т.е. она численно определяет степень доверия тем значениям, которые могут быть приписаны упомянутой величине на основе доступной информации. Информация обычно состоит из необработанных статистических данных, результатов измерения, научных выводов, профессиональных суждений.

Для построения плотности распределения вероятностей случайной переменной на основе наблюдений может быть применена теорема Байеса [27, 33]. Информация о систематических эффектах может быть преобразована в соответствующую плотность распределения вероятностей на основе принципа максимума энтропии [51, 56].

Трансформирование распределений имеет более широкую область применения, чем способ оценивания неопределенности по GUM. Метод трансформирования распределений использует более обширную информацию, чем та, что содержится в наилучших оценках и соответствующих стандартных неопределенностях (а также в числах степеней свободы и ковариациях).

Исторический обзор приведен в приложении А.

Примечание 3 - Плотность распределения вероятностей не следует понимать в смысле частотного описания вероятности.

Примечание 4 - "Оценивание неопределенности нельзя рассматривать как типовую задачу, требующую применения стандартных математических процедур. От пользователя требуется детальное знание природы измеряемой величины и процедуры измерения. Поэтому качество оценки неопределенности, приписанной результату измерений, зависит в конечном счете от понимания, критического анализа и профессиональной добросовестности всех лиц, принимающих участие в ее получении" [17].

0.2 Основные сведения о JCGM

В 1997 г. семью международными организациями, подготовившими в 1993 г. "Руководство по выражению неопределенности измерения" (GUM) и "Международный словарь по метрологии. Основные и общие понятия и связанные с ними термины" (VIM), был образован Объединенный комитет по руководствам в метрологии (JCGM), возглавляемый директором Международного Бюро Мер и Весов (МБМВ), который принял на себя ответственность за указанные документы от Технической консультативной группы по метрологии (ИСО/ТАГ 4).

Учредителями JCGM помимо МБМВ являются Международная электротехническая комиссия (МЭК), Международная федерация клинической химии и лабораторной медицины (МФКХ), Международное сотрудничество по аккредитации лабораторий (ИЛАК), Международная организация по стандартизации (ИСО), Международный союз теоретической и прикладной химии (ИЮПАК), Международный союз теоретической и прикладной физики (ИЮПАП) и Международная организация по законодательной метрологии (МОЗМ).

Дополнения к GUM, подобные тому, что положено в основу настоящего стандарта, имеют целью распространить руководство на те аспекты, которые в этом руководстве в полной мере не отражены. При этом, однако, разрабатываемые дополнения соответствуют, насколько это возможно, общей методологии, изложенной в GUM.

1 Область применения

Настоящий стандарт может быть использован для определения плотности распределения вероятностей выходной величины, что позволяет получить:

a) оценку выходной величины;

b) стандартную неопределенность, ассоциированную с этой оценкой;

c) интервал охвата для выходной величины, соответствующий заданной вероятности охвата.

При заданных (i) модели, описывающей взаимосвязь входных величин с выходной величиной, и (ii) плотностях распределения вероятностей входных величин существует единственная плотность распределения вероятностей выходной величины. Как правило, последняя не может быть определена аналитически. Настоящий стандарт позволяет определить величины, указанные в перечислениях а), b) и с) с приемлемой точностью, не используя приближений, которые нельзя оценить количественно.

Настоящий стандарт позволяет получить интервал охвата для заданной вероятности охвата, в том числе вероятностно симметричный и наименьший интервалы.

Настоящий стандарт применим к статистически независимым входным величинам с соответствующими функциями плотности распределения вероятностей, а также к статистически зависимым случайным переменным, описанным совместной плотностью распределения.

Как правило, настоящий стандарт применяют в случаях, когда:

- трудно или неудобно находить частные производные от функции измерения, как того требует закон трансформирования неопределенностей;

Читайте также: