Правила грамматики выражения в интерпретаторе определяются
Обновлено: 05.11.2024
В предыдущей статье я описал векторные языки и их ключевые отличия от обычных языков. На коротких примерах я постарался показать, как эти особенности позволяют реализовывать алгоритмы необычным образом, кратко и с высоким уровнем абстракции. В силу своей векторной природы такие языки идеально присоблены для обработки больших данных, и в качестве доказательства в этой статье я полностью реализую на векторном языке простой SQL интерпретатор. А чтобы продемонстрировать, что векторный подход можно использовать на любом языке, я реализую тот же самый интерпретатор на Rust. Преимущества векторного подхода столь велики, что даже интерпретатор в интерпретаторе сможет обработать select с группировкой из таблицы в 100 миллионов строк за 20 с небольшим секунд.
Общий план
Конечная цель - реализовать интепретатор, способный выполнять выражения типа:
Т.е. он должен поддерживать основные функции типа сложения и сравнения, позволять where и group by выражения, а также - inner join по нескольким колонкам.
В качестве векторного языка я возьму Q, так как его специализация - базы данных.
Интерпретатор будет состоять из лексера, парсера и собственно интерпретатора. Для экономии места я буду приводить только ключевые места, а весь код можно найти здесь. Так же для краткости я реализую лишь часть функциональности, но так, чтобы все важное было на месте: join, where, group by, 3 типа данных, агрегирующие функции и т.п.
На примере лексера вы сможете познакомиться, пожалуй, с одним из самых красивых приемов программирования, который встречается в векторных языках, - использование данных как функций.
Парсеры оперируют деревьями и векторность тут не дает никаких преимуществ. Поэтому в этой части я сделаю упор на Rust и на то, как на нем можно реализовать генератор функциональных рекурсивно-нисходящих парсеров. Несмотря на свою второстепенность, эта часть занимает большое количество места, поэтому я перенес ее в конец, чтобы не утомлять читателей.
Наконец, сам интерпретатор. На Q он имеет весьма скромные размеры - строк 25. На Rust, конечно, гораздо больше, но написать его проще, чем может показаться. Нужно просто по шагам повторять все операции Q, адаптируя их к специфике Rust.
Это моя первая программа на Rust и сразу хочу сказать, что слухи о его сложности сильно преувеличены. Если писать в функциональном стиле (read only), то проблем нет никаких. После того, как Rust несколько раз забраковал мои идеи, я понял, чего он хочет и уже не сталкивался с необходимостью все переделывать из-за контроллера ссылок, а явные времена жизни понадобились только один раз и по делу. Зато взамен мы получаем программу, которую можно распараллелить по щелчку пальцев. Что мы и сделаем, чтобы добиться просто феноменальной производительности для столь примитивной программы.
В завершение о производительности. Векторный подход настолько крут, что без разницы - пишите вы на интерпретируемом языке или на Rust, все равно всю работу делают векторные операции. Поэтому интерпретатор на Q работает всего в полтора раза медленнее самого Q на аналогичных данных.
Лексер
Векторные языки идеальны для написания лексеров. Пусть у нас есть функция fsa, которая принимает на вход текущее состояние лексера и входной символ и возвращает новое состояние:
Если мы применим эту функцию последовательно ко всей входной строке, то получим на выходе последовательность состояний лексера, т.е. каждому символу будет поставлено в соответствие состояние лексера. Все, что нам остается, это найти индексы особых граничных состояний и разрезать по ним входную строку на части. Схему работы лексера можно изобразить наглядно:
Т.е. есть следующие этапы:
Трансформация. Закодированные символы пропускаются через fsa (aa.aaa -> aAAAAA, 00.00 -> 0IFFF, "sss 1" -> "SSSSSR).
Разбиваем начальную строку на части по начальным состояниям (a, 0, " и т.д.). Для удобства все не начальные состояния обозначены большими буквами.
Все три этапа - это векторные операции, поэтому на Q эта идея реализуется одной строкой (все состояния закодированы так, что начальные меньше limit):
Это в сущности весь лексер. Правда еще необходимо определить fsa. В подавляющем большинстве случаев в качестве fsa можно взять матрицу - таблицу переходов конечного автомата. Простой автомат можно задать и руками, но можно реализовать небольшой DSL. Отображение в группы можно организовать через небольшой массив (ограничимся ASCII символами для простоты):
Для краткости я не привожу все цифры и буквы. Нас интересуют пробельные символы, цифры, буквы, а также несколько специальных символов. Мы закодируем эти группы числами 1, 2 и т.д., все остальные символы поместим в группу 0. Чтобы закодировать входную строку, достаточно взять индекс в массиве c2grp:
Автомат задается правилами (текущее состояние(я);группа(ы) символов) -> новое состояние. Для обозначения групп и начальных состояний токенов удобно использовать первые символы соответствующих групп (для группы 0..9 - 0, например). Для обозначения промежуточных состояний - большие буквы. Например, правило для имен можно записать так:
т.е. если автомат находится в состояниях "a" (начало имени) или "A" (внутри имени), и на вход поступают символы из групп [a,0,.], то автомат остается в состоянии "A". В начальное состояние "a" автомат попадет автоматически, когда встретит букву (это правило действует по умолчанию). После этого, если дальше он встретит букву, цифру или точку, то перейдет во внутреннее состояние "A" и будет там оставаться до тех пор, пока не встретит какой-то другой символ. Я запишу все правила без лишних комментариев (Rust):
Числа и строки заданы в упрощенном формате. "*" в качестве входного символа имеет специальное значение - все возможные символы. Большие буквы - это состояния внутри токенов. Такая договоренность дает нам возможность легко определить начало токена - это все состояния, которые не большие буквы.
Матрица fsa из этих правил генерируется элементарно. Схематично это выглядит так:
Необходимо закодировать символы с помощью вектора states:
Код генерации fsa я опускаю - он следует схеме выше.
Матрица переходов у нас есть, осталось определить саму функцию lex. В парсере нам понадобится знать тип токена, поэтому вычислим и его тоже. На Rust лексер выглядит так:
На Q получится значительно более кратко:
Если мы запустим лексер, то получим:
Интерпретатор
Интерпретатор можно разделить на две части - выполнение выражений и выполнение select. Первая часть тривиальна на Q, но требует большого количества кода на Rust. Я приведу основные структуры данных, чтобы было понятно, как в целом работает интерпретатор. В основе лежит enum Val:
Есть три типа данных - строки, целые и нецелые, две формы их представления - атомарная и вектор. Также есть таблицы и ошибки. Dict - это пара Vec<String> и Vec<T> одинаковой длины. В случае таблицы T = Vec<RVal>, где каждый Val - это II, DD или SS. Rust позволяет в легкую распаралелливать программу, но нужно, чтобы типы данных позволяли передавать свои значения между потоками. Для этого я обернул все разделяемые значения в асинхронный счетчик ссылок Arc. Считается, что атомарные операции более медленные, однако в программе, которая работает с большими данными, это не имеет большого значения.
Интерпретатор работает с выражениями:
ELst и Empty используются только парсером. Expr (ссылки на себя) необходимо хранить в куче (Box). Выполняются выражения функцией eval в некотором контексте, где заданы переменные (Set), а также могут быть определены колонки таблицы:
eval сравнительно проста (self = ECtx):
Set и Sel нужен модифицируемый контекст, а его нельзя будет передать просто так в другой поток. Поэтому eval разбит на две части. Задача resolve_name - найти переменную или колонку и при необходимости применить where индекс. eval_table - собрать таблицу из частей и проверить, что с ней все в порядке (колонки одной длины и т.п.). Функции F1 (max, count . ) и F2 (+, >=, . ) сводятся к огромным match блокам, где для каждого типа прописывается нужная операция. Макросы позволяют уменьшить количество кода. Например, для арифметических операций часть match выглядит так:
Это может показаться неоптимальным, но когда вы обрабатываете таблицу на 100 миллионов строк, это не имеет ни малейшего значения. Видите слово par_iter выше? Это все, что нужно сделать в Rust, чтобы операция стала параллельной.
Выполнение select гораздо интереснее и сложнее. Разберем его на Q, потому что код на Rust многословно повторяет код на Q, который и сам по себе непростой.
Select состоит из подвыражений (join, where, group, select, distinct, into), каждое из которых выполняется отдельно. Самое сложное из них - join. В его основе лежит функция rename, задача которой присвоить колонкам уникальные имена, чтобы не возникло конфликта при join:
Все эти манипуляции сводятся к построению двух словарей - отображения из настоящих имен колонок и расширенных (table.name) в уникальные и из уникальных имен в сами колонки таблицы. Уникальные имена позволяют иметь в одной join таблице колонки с одинаковыми именами из разных таблиц и обращаться к ним в выражениях через нотацию с точкой.
В основе join следующая функция:
Вся работа выполняется в функции sij, все остальное - это манипуляции именами, колонками и индексами. Если бы мы захотели добавить другой тип индекса, достаточно было бы написать еще одну sij. Конечно, функция выглядит непросто, но учитывая, что она покрывает 80% select, ей можно это простить.
Функция sij сводится к поиску строк таблицы x в таблице y. В Rust для этих целей можно использовать HashMap с быстрой hash функцией FNV - поместить в Map одну таблицу и потом искать в ней строки второй. В Q, судя по времени выполнения, скорее всего используется что-то подобное. В целом в Q у нас есть два варианта - использовать векторные примитивы или воспользоваться встроенными возможностями связанными с таблицами. В первом варианте все по-честному:
используем функцию поиска значения в векторе (?) и транспозиции матрицы (flip). Этот вариант не такой медленный как может показаться - всего в 2.5 раза медленнее, чем оптимизированный поиск сразу по таблице (который выглядит ровно также - x?y, только x и y - таблицы, а не списки векторов). Это показывает в очередной раз силу векторных примитивов.
Наконец сам join - это просто цикл свертки по всем таблицам (fold):
Основная функция select:
Функция sgrp в основе group by - это просто векторный примитив group, возвращающий словарь, где ключи - уникальные значения, а значения - их индексы во входном значении:
Я опускаю distinct и into части, поскольку они малоинтересны. В целом - это весь select на Q. В краткой записи он занимает всего 25 строк. Можно ли ждать хоть какой-то производительности от столь скромной программы? Да, потому что она написана на векторном языке!
Производительность
Напомню, что этот игрушечный интерпретатор может выполнять выражения типа
и при этом справляться с таблицами в сотни миллионов строк. В частности таблица bt в выражении выше сгенерирована выражением:
Т.е. содержит 100 миллионов строк. Поначалу базовый select с group by (получается 800 групп по
работал 44 секунды в программе на Rust, что совсем неплохо и само по себе. Однако после некоторых оптимизаций, а главное распаралелливания ключевых операций, мне удалось добиться скорости порядка 6 секунд. На мой взгляд весьма хороший результат для подобной таблицы.
Самое главное, программа на Rust, несмотря на свой внушительный вид, - это почти 1 в 1 программа на Q. Поэтому больших интеллектуальных усилий и даже отладки она не потребовала. Также благодаря векторности изначального языка ее ускорение путем распараллеливания не потребовало почти никаких усилий - если все операции изначально над массивами, то все что нужно - это вставить там и тут par_iter вместо iter.
Интерпретатор на Q не столь быстр, но вышеуказанный select всего на 50% медленнее аналогичного запроса на самом Q. Это значит, что по сути Q работает на больших данных почти также быстро, как и программа на компилируемом языке.
Хочу также отметить то, насколько великолепным языком проявил себя Rust. За все время разработки и отладки я не получил ни одного segfault и даже panic увидел всего несколько раз, и почти все это были простые ошибки выхода за пределы массива. Также поражает, насколько легко и безопасно в нем можно распараллелить задачу.
Парсер
Я отложил парсер на конец, поскольку он довольно объемен и не имеет прямого отношения к теме статьи. Тем не менее, может вам будет интересно ознакомиться с тем, как легко можно написать весьма серьезный парсер в функциональном стиле на Rust.
Это рекурсивный нисходящий парсер без заглядывания вперед. Из-за этого он не может предсказать следующий шаг и вынужден обходить все варианты. Такой парсер, конечно, медленный и не годится для серьезных задач, но для SQL выражений больше и не надо. Какая разница, парсится выражение 1 микросекунду или 10, если сам запрос займет минимум сотни микросекунд.
Такие парсеры часто пишут руками, и выглядят они примерно так:
Главная идея предлагаемого парсера в том, что нет смысла писать это все руками, можно написать генератор подобных парсеров из BNF-подобной формы. Для всех сущностей BNF пишем по функции, затем генерируем из описания грамматики в виде строк набор парсящих функций, и все готово. В Rust, как строго типизированном языке, есть нюансы. В первую очередь определим типы для парсящих и post process функций:
ParseFn будет захватывать правила грамматики, поэтому она должна быть замыканием (closure) и лежать в куче. PCtx содержит другие ParseFn для рекурсивных вызовов и PPFn для постобработки дерева. Если парсинг не удался, она возвращает None, иначе Some с выражением и новым индексом в массив токенов. PPFn обрабатывает узел дерева, поэтому принимает безликий список выражений и превращает его в нужное выражение.
Для понимания процесса приведу часть грамматики, касающуюся выражений:
Тут видны ключевые части - имя правила, само правило и PP функции в фигурных скобках. Каждая продукция правила должна заканчиваться на PP функцию, поскольку правило возвращает Expr, а не Vec<Expr>. PP функция по умолчанию возвращает последний элемент вектора, поэтому кое-где PP функций нет. ID, NUM и т.п. должны обрабатываться ParseFn функцией с соответствующим именем.
Генерируется наш парсер с помощью следующей функции:
l - это лексер, я переиспользую для этого лексер SQL. Нужно добавить карту глубины вложенности скобок, чтобы было удобно выделять BNF подвыражения. Поскольку это парсер для внутренних потребностей, то нет необходимости проверять правильность скобок, беспокоиться о глубине рекурсии и т.п.
Далее наше правило поступает в парсер BNF. Нужно реализовать следующие компоненты:
Читайте также: