По аналитическому выражению связь между признаками может быть

Обновлено: 04.11.2024

Статистика разработала множество методов изучения связей, вы­бор которых зависит от целей исследования и поставленных задач. Связи между признаками и явлениями, ввиду их большого разнооб­разия, классифицируются по ряду оснований. Признаки по значению для изучения взаимосвязи делятся на два класса. Признаки, обуслав­ливающие изменения других, связанных с ними признаков, называ­ются факторными, или просто факторами. Признаки, изменяющие­ся под действием факторных признаков, являются результативными. Связи между явлениями и их признаками классифицируются по сте­пени тесноты связи, направлению и аналитическому выражению.

В статистике различают функциональную связь и стохастическую зависимость. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой конкрет­ной единицы исследуемой совокупности.

Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической. Частным случаем стохас­тической является корреляционная связь, при которой изменение сред­него значения результативного признака обусловлено изменением факторных признаков.

По направлению выделяют связь прямую и обратную. При прямой связи с увеличением или уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного. Так, например, рост производительности труда способствует увеличению уровня рентабельности производства. В случае обратной связи значе­ния результативного признака изменяются под воздействием фактор­ного, но в противоположном направлении по сравнению с изменением факторного признака. Так, с увеличением уровня фондоотдачи снижа­ется себестоимость единицы производимой продукции.

По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные. Если статистическая связь меж­ду явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы, степен­ной, показательной, экспоненциальной и т. д.), то такую связь назы­вают нелинейной, или криволинейной.

В статистике не всегда требуются количественные оценки связи, ча­сто важно определить лишь ее направление и характер, выявить форму воздействия одних факторов на другие. Для выявления наличия связи, ее характера и направления в статистике используются методы приведе­ния параллельных данных; аналитических группировок; графический, корреляционный, регрессионный.

Метод приведения параллельных данных основан на сопоставле­нии двух или нескольких рядов статистических величин. Такое сопо­ставление позволяет установить наличие связи и получить представ­ление о ее характере. Сравним изменения двух величин X и У. С увеличением величины X величина У также возрастает. Поэтому связь между ними прямая, и описать ее можно или уравнением прямой, или уравнением параболы второго порядка.

Взаимосвязь двух признаков изображается графически с помощью поля корреляции. В системе координат на оси абсцисс откладываются значения факторного признака, а на оси ординат –результативного. Каждое пересечение линий, проводимых через эти оси, обозначается точкой. При отсутствии тесных связей наблюдается беспорядочное рас­положение точек на графике. Чем сильнее связь между признаками, тем теснее будут группироваться точки вокруг определенной линии, выражающей форму связи

Читайте также: