Что такое эквивалентное выражение

Обновлено: 22.12.2024

Мы постоянно имеем дело с разными высказываниями. Иногда они совершенно простые: «корова», «дождь», «холодно». Иногда высказывание чуть посложнее: «корова мычит», «все вороны чёрные», «если пойдёт дождь, я возьму зонтик».

И далеко не всегда понятно, что одна фраза логически эквивалентна другой.

Пабло Пикассо. Натюрморт, 1918 Пабло Пикассо. Натюрморт, 1918

О чём речь?

Речь идёт про логическую эквивалентность. Её ещё называют логическая равнозначность, или эквиваленция. Это логическое выражение, указывающее, что два высказывания всегда одинаково истинны или одинаково ложны. Обозначается ≡, ↔ или ⇔ . Означает: Х тогда и только тогда, когда Y.

Записывается X ⇔ Y, X ↔ Y или X ≡ Y.

Таблица истинности для логической эквивалентности (0 обозначает ложь, 1 — истину) Таблица истинности для логической эквивалентности (0 обозначает ложь, 1 — истину)

Пример использования

Возьмём выражение и попробуем найти для него эквивалентное.

X — « Если пойдёт дождь, то я возьму зонтик ».

Разобьём выражение на две части, связанных следствием (импликацией):

A — «пойдёт дождь»;

B — «я возьму зонтик»;

Какая из фраз будет логически эквивалентна фразе X?

Y — «Если я не возьму зонтик, то дождь не пойдёт». ¬B → ¬A

Z — «Если дождь не пойдёт, то я не возьму зонтик». ¬A → ¬B

Может интуитивно показаться, что X ↔ Z. Но так ли это?

Давайте снова обратимся к таблицам истинности и аккуратно подсчитаем значения всех выражений:

Таблица истинности для выражений A → B, ¬B → ¬A, ¬A → ¬B Таблица истинности для выражений A → B, ¬B → ¬A, ¬A → ¬B

Получается, что логически эквивалентным выражению « Если пойдёт дождь, то я возьму зонтик » будет выражение « Если я не возьму зонтик, то дождь не пойдёт ».

Парадокс ворона

Иногда логическая эквивалентность приводит к неожиданным результатам. Допустим, к такому утверждению: чтобы доказать, что все вороны чёрные, нужно проверить все нечёрные предметы . Если среди нечёрных предметов нет ни одного ворона, то все вороны действительно чёрные. Но разве наша убеждённость в том, что все вороны чёрные, возрастает, когда мы видим пегую лошадь или красное яблоко?

Об этом парадоксе писал ещё Гемпель. На нашем канале мы тоже разбирали этот парадокс : логического противоречия в нём нет, а наша убеждённость вполне соответствует статистическому объяснению с помощью теоремы Байеса.

Читайте также: