Пьер де ферма цитаты

Обновлено: 07.11.2024

«Правила жизни Петра Тодоровского», журнал Эсквайр (Esquire).

„Надрезав утью тушку, и обнаружив, что всё её пузо заполнено нежно-кремовой печенью, я сплясал танец выжившего из ума от счастья фермера.“

— Дмитрий Владимирович Климов российский фермер, менеджер, журналист. 1967

„Положение таково: в Канаде нынче такой хороший урожай, что она могла бы выделить зерна втрое больше, чем необходимо для предотвращения страшного голода в России. В США пшеница гниёт у фермеров, которые не могут найти покупателей для излишков зерна. В Аргентине скопилось такое количество кукурузы, что её некуда девать и ею уже начинают топить паровозы. Во всех портах Европы и Америки простаивают целые флотилии судов. Мы не знаем, чем их загрузить. А между тем рядом с нами на Востоке голодают миллионы людей. Наше мероприятие можно осуществить не иначе, как с поддержкой Лиги. Пусть Лига Наций придёт нам на помощь, и давайте не будем лицемерить. Будем смотреть фактам в лицо, примем их такими, каковы они на самом деле. Правда ли, что в настоящий момент правительства никак не могут выделить 5 миллионов фунтов? Они не могут сообща набрать эту сумму, а ведь она составляет лишь половину того, во что обходится постройка одного боевого корабля! Пища лежит в Америке, но некому её взять. Неужели Европа может сидеть спокойно, ничего не предпринимая для того, чтобы доставить сюда пищу, которая нужна для спасения людей по сю сторону океана? Я не верю этому. Я убежден, что народы Европы заставят свои правительства принять должное решение.“

— Фритьоф Нансен норвежский полярный исследователь, океанограф, зоолог 1861 - 1930

Слова Нансена на сессии Лиги Наций 30 сентября 1921 г. после того, как он побывал в России во время голода, вызванного гражданской войной
Источник: Нансен-Хейер Л. Книга об отце. — Л.: Гидрометеоиздат, 1973. — С. 354.

Help us translate English quotes

Discover interesting quotes and translate them.

Следующая цитата

Арифметика имеет свою собственную область, теорию целых чисел; эта теория была лишь слегка затронута Евклидом и не была достаточно разработана его последователями (если только она не содержалась в тех книгах Диофанта, которых нас лишило разрушительное действие времени); математики, следовательно, должны ее развить или возобновить.

Ссылки на афоризм:

Прямая ссылка на афоризм

HTML код ссылки на афоризм

BB код ссылки на афоризм

Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата и вообще ни в какую степень, большую квадрата, на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки.

Следующая цитата

В одном из некрологов Пьеру Ферма говорилось: «Это был один из наиболее замечательных умов нашего века, такой универсальный гений и такой разносторонний, что если бы все ученые не воздали должное его необыкновенным заслугам, то трудно было бы поверить всем вещам, которые нужно о нем сказать, чтобы ничего не упустить в нашем похвальном слове».

К сожалению, о жизни великого ученого известно не так много. Пьер Ферма родился на юге Франции в небольшом городке Бомон-де-Ломань, где его отец — Доминик Ферма — был «вторым консулом», т. е. чем-то вроде помощника мэра. Метрическая запись о его крещении от 20 августа 1601 года гласит: «Пьер, сын Доминика Ферма, буржуа и второго консула города Бомона». Мать Пьера, Клер де-Лонг, происходила из семьи юристов.

Доминик Ферма дал своему сыну очень солидное образование. В колледже родного города Пьер приобрел хорошее знание языков: латинского, греческого, испанского, итальянского. Впоследствии он писал стихи на латинском, французском и испанском языках «с таким изяществом, как если бы он жил во времена Августа и провел большую часть своей жизни при дворе Франции или Мадрида».

Ферма славился как тонкий знаток античности, к нему обращались за консультацией по поводу трудных мест при изданиях греческих классиков. Из древних писателей он комментировал Атенея, Полюнуса, СинезуGa, Теона Смирнского и Фронтина, исправил текст Секста Эмпирика. По общему мнению, он мог бы составить себе имя в области греческой филологии.

Но Ферма направил всю силу своего гения на математические исследования. И все же математика не стала его профессией. Ученые его времени не имели возможности посвятить себя целиком любимой науке.

Ферма избирает юриспруденцию. Степень бакалавра была ему присуждена в Орлеане. С 1630 года Ферма переселяется в Тулузу, где получает место советника в Парламенте (т. е. суде). О его юридической деятельности говорится в «похвальном слове», что он выполнял ее «с большой добросовестностью и таким умением, что он славился как один из лучших
юристов своего времени».

В 1631 году Ферма женился на своей дальней родственнице с материнской стороны — Луизе де-Лонг. У Пьера и Луизы было пятеро детей, из которых старший, Самюэль, стал поэтом и ученым. Ему мы обязаны первым собранием сочинений Пьера Ферма, вышедшим в 1679 году. К сожалению, Самюэль Ферма не оставил никаких воспоминаний об отце.

При жизни Ферма о его математических работах стало известно главным образом через посредство обширной переписки, которую он вел с другими учеными. Собрание сочинений, которое он неоднократно пытался написать, так и не было им создано. Да это и неудивительно при той напряженной работе в суде, которую ему пришлось выполнять. Ни одно из его сочинений не было опубликовано при жизни. Однако нескольким трактатам он придал вполне законченный вид, и они стали известны в рукописи
большинству современных ему ученых. Кроме этих трактатов осталась еще обширная и чрезвычайно интересная его переписка. В XVII веке, когда еще не было специальных научных журналов, переписка между учеными играла особую роль. В ней ставились задачи, сообщалось о методах их решения, обсуждались острые научные вопросы.

Корреспондентами Ферма были крупнейшие ученые его времени Декарт, Этьен и Влез Паскали, де-Бееси, Гюйгенс, Торричелли Валлис. Письма посылались либо непосредственно корреспонденту, либо в Париж аббату Мерсенну (соученику Декарта по колледжу); последний размножал их и посылал тем математикам, которые занимались аналогичными вопросами. Но письма ведь почти никогда не бывают только короткими математическими мемуарами. В них проскальзывают живые чувства авторов, которые помогают воссоздать их образы, узнать об их характере и темпераменте. Обычно письма Ферма были проникнуты дружелюбием.

Одной из первых математических работ Ферма было восстановление двух утерянных книг Аполлония «О плоских местах».

Крупную заслугу Ферма перед наукой видят, обыкновенно, во введении им бесконечно малой величины в аналитическую геометрию, подобно тому, как это, несколько ранее, было сделано Кеплером в отношении геометрии древних. Он совершил этот важный шаг в своих относящихся к 1629 году работах о наибольших и наименьших величинах, — работах, открывших собою тот ряд исследований Ферма, который является одним из самых крупных звеньев в истории развития не только высшего анализа вообще, но и анализа бесконечно малых в частности.

В конце двадцатых годов Ферма открыл методы нахождения экстремумов и касательных, которые, с современной точки зрения, сводятся к отысканию производной. В 1636 году законченное изложение метода было передано Мерсенну и с ним могли познакомиться все желающие.

В 1637—1638 годах по поводу «Метода отыскания максимумов и минимумов» у Ферма возникла бурная полемика с Декартом. Последний не понял метода и подверг его резкой и несправедливой критике. В одном из писем Декарт утверждал даже, что метод Ферма «содержит в себе паралогизм». В июне 1638 года Ферма послал Мерсенну для пересылки Декарту новое, более подробное изложение своего метода. Письмо его сдержанно,
но не без внутренней иронии. Он пишет: «Таким образом, обнаруживается, что либо я плохо объяснил, либо г. Декарт плохо понял мое латинское сочинение. Я все же пошлю ему то, что уже написал, и он, несомненно, найдет там вещи, которые помогут ему отказаться от мнения, будто я нашел этот метод случайно и его подлинные основания мне неизвестны».

Ферма ни разу не изменяет своему спокойному тону. Он чувствует свое глубокое превосходство как математика, поэтому не входит в мелочную полемику, а терпеливо старается растолковать свой метод, как это сделал бы учитель ученику.

До Ферма систематические методы вычисления площадей разработал итальянский ученый Кавальєри. Но уже в 1642 году Ферма открыл метод вычисления площадей, ограниченных любыми «параболами» и любыми «гиперболами». Им было показано, что площадь неограниченной фигуры может быть конечной.

Ферма одним из первых занялся задачей спрямления кривых, т. е. вычислением длины их дуг. Он сумел свести эту задачу к вычислению некоторых площадей.

Таким образом, понятие «площади» у Ферма приобретало уже весьма абстрактный характер. К определению площадей сводились задачи на спрямление кривых, вычисление сложных площадей он сводил с помощью подстановок к вычислению более простых площадей. Оставался только шаг, чтобы перейти от площади к еще более абстрактному понятию «интеграл».

Дальнейший успех методов определения «площадей», с одной стороны, и «методов касательных и экстремумов» — с другой, состоял в установлении взаимной связи этих методов. Есть указания на то, что Ферма уже видел эту связь, знал, что «задачи на площади» и «задачи на касательные» являются взаимно обратными. Но он нигде не развил свое открытие сколько-нибудь подробно. Поэтому честь его по праву приписывается
Барроу, Ньютону и Лейбницу, которым это открытие и позволило создать
Дифференциальное и интегральное исчисления.

Несмотря на отсутствие доказательств (из них дошло только одно), трудно переоценить значение творчества Ферма в области теории чисел. Ему одному удалось выделить из хаоса задач и частных вопросов, сразу же возникающих перед исследователем при изучении свойств целых чисел, основные проблемы, которые стали центральными для всей классической теории чисел. Ему же принадлежит открытие мощного общего метода для доказательства теоретико-числовых предложений — так называемого метода неопределенного или бесконечного спуска, о котором будет сказано ниже. Поэтому Ферма по праву может считаться основоположником теории чисел.

В письме к де-Бесси от 18 октября 1640 года Ферма высказал следующее утверждение: если число а не делится на простое число р, то существует такой показатель к, что а—7 делится на р, причем к является делителем р—1. Это утверждение получило название малой теоремы Ферма.

Оно является основным во всей элементарной теории чисел. Эйлер дал этой теореме несколько различных доказательств.

В задаче второй книги своей «Арифметики» Диофант поставил задачу представить данный квадрат в виде суммы двух рациональных квадратов. На полях, против этой задачи, Ферма написал:

«Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата и вообще ни в какую степень, большую квадрата, на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки». Это и есть знаменитая Великая теорема.

Теорема эта имела удивительную судьбу. В прошлом веке ее исследования привели к построению наиболее тонких и прекрасных теорий, относящихся к арифметике алгебраических чисел. Без преувеличения можно сказать, что она сыграла в развитии теории чисел не меньшую роль, чем задача решения уравнений в радикалах. С той только разницей, что последняя уже решена Галуа, а Великая теорема до сих пор побуждает
математиков к исследованиям.

С другой стороны, простота формулировки этой теоремы и загадочные слова о «чудесном доказательстве» ее привели к широкой популярности теоремы среди не математиков и к образованию целой корпорации «ферматистов», у которых, по словам Дэвенпорта, «смелость значительно превосходит их математические способности». Поэтому Великая теорема стоит на первом месте по числу данных ей неверных доказательств.

Сам Ферма оставил доказательство Великой теоремы для четвертых степеней. Здесь он применил «метод неопределенного или бесконечного спуска», который он описывал в своем письме к Каркави (август 1659 года) следующим образом:

«Если бы существовал некоторый прямоугольный треугольник в целых числах, который имел бы площадь, равную квадрату, то существовал бы другой треугольник, меньший этого, который обладал бы тем же свойством. Если бы существовал второй, меньший первого, который имел бы то же свойство, то существовал бы в силу подобного рассуждения третий, меньший второго, который имел бы то же свойство, и, наконец, четвертый, пятый, спускаясь до бесконечности. Но если задано число, то не
существует бесконечности по спуску меньших его (я все время подразумеваю целые числа). Откуда заключают, что не существует никакого прямоугольного треугольника с квадратной площадью». Именно этим методом были доказаны многие предложения теории чисел, и, в частности, с его помощью Эйлер доказал Великую теорему для п=4 (способом, несколько отличным от способа Ферма), а спустя 20 лет и для п=3.

В прошлом веке Куммер, занимаясь Великой теоремой Ферма, построил арифметику для целых алгебраических чисел определенного вида. Это позволило ему доказать Великую теорему для некоторого класса простых показателей п. В настоящее время справедливость Великой теоремы проверена для всех показателей п меньше 5500.

Отметим также, что Великая теорема связана не только с алгебраической теорией чисел, но и с алгебраической геометрией, которая сейчас интенсивно развивается.

У Ферма есть много других достижений. Он первым пришел к идее координат и создал аналитическую геометрию. Он занимался также задачами теории вероятностей. Но Ферма не ограничивался одной только математикой, он занимался и физикой, где ему принадлежит открытие закона распространения света в средах. Ферма исходил из предположения, что свет пробегает путь от какой-либо точки в одной среде до некоторой точки в другой среде в наикратчайшее время. Применив свой метод максимумов и минимумов, он нашел путь света и установил, в частности, закон преломления света. При этом Ферма высказал следующий общий принцип: «Природа всегда действует наиболее короткими путями», который может считать предвосхищением принципа наименьшего действия Мопертюи — Эйлера.

Одно из последних писем ученого к Каркави получило название «завещание Ферма». Вот его заключительные строки:

«Быть может, потомство будет признательно мне за то, что я показал ему, что древние не все знали, и это может проникнуть в сознание тех, которые придут после меня для передачи факела сыновьям, как говорит великий канцлер Англии, следуя чувствам которого, я добавлю: «Многие будут приходить и уходить, а наука обогащается».

Пьер Ферма скончался 12 января 1665 года во время одной из деловых поездок.

„Так вот этот Мальтен рассказал мне следующее приключение. Его двоюродный брат, унтер-офицер индийской армии, в одно прекрасное воскресенье отправился из Калькутты на загородную ферму, в гости к приятелю. На ферме он застал праздник; к вечеру было пьяно всё — господа и слуги, англичане и индусы, люди и слоны. Кузен Мальтена — человек, склонный к поэтическим настроениям, даже стихи пишет. Чуть ли не ради поэтических впечатлений и угораздило его попасть именно в индийскую армию. Отдалясь от пьяного общества, он одиноко стоял у колючей растительной изгороди, смотрел на закат солнца и, как очень хорошо помнит, обдумывал письмо в Ливерпуль, к своей невесте. Именно на полуслове: «…ваша фантазия не в силах вообразить, дорогая мисс Флоренса, неисчислимые богатства индийской флоры и фау…», он слышит позади себя тяжкие и частые удары. Точно какой-нибудь исполин сверхъестественной величины и силы, Антей, Атлас, с размаху вбивает в землю одну за другой длинные сваи. Не успел мечтатель обернуться, как его схватило сзади что-то необыкновенно крепкое, могучее, эластическое, подбросило высоко в воздух и, помотав несколько секунд, как маятник, с силою швырнуло в иглистые кусты алоэ — полумёртвого, не столько от боли, сколько от ужаса непонимания и незнания, самого опасного и могущественного из ужасов: его описали в древности Гомер и Гезиод, а в наши дни со слов Тургенева — Ги де Мопассан. Беднягу с трудом привели в чувство. Разгадка происшествия оказалась очень простою: один из рабочих слонов фермера добрался до кувшинов с пальмовым вином, опустошил их, опьянел и пришёл в ярость. Мундир унтер-офицера привлёк внимание хмельного скота своей яркостью, и кузен Мальтена стал его жертвой… Такого разнообразия индийской фауны не только мисс Флоренса, но и сам горемычный жених её, конечно, не мог себе ранее вообразить. Ощущение нежданно-негаданно схваченного слоном солдата, в ту минуту, когда он не только не думал о каком-нибудь слоне определённом но, вероятно, позабыл и самую «идею слона», вероятно, было близко к ощущениям человека в первый момент землетрясения.“

— Александр Валентинович Амфитеатров российский прозаик, публицист, фельетонист, литературный и театральный критик, драматург 1862 - 1938

Следующая цитата

Подборка мемов наших авторов, созданных в категории Блиц

Самое большое, что может сделать человек - это обнаружить привязанность к одному или нескольким избранным человеческим существам. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК, ПРИВЯЗАННОСТЬ] [21.08.2013 19:26:15] < 3292 / 0 / 0 >

VK

Человек вошел в мир бесшумно. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК, МИР] [14.10.2000 00:53:11] < 1355 / 0 / 0 >

VK

С чисто позитивистской точки зрения человек - самый таинственный и сбивающий с толку исследователей объект науки. Ничтожный морфологический скачок и вместе с тем невероятное потрясение сфер жизни - в этом весь парадокс человека. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК, ПАРАДОКС, НЕВЕРОЯТНОЕ] [14.10.2000 00:53:11] < 1344 / 0 / 0 >

VK

Никогда ни мир не будет достаточно обширным, ни человечество достаточно могущественным, чтобы стать достойным того. (Пьер Тейяр де Шарден) [МУЖЧИНЫ, ЧЕЛОВЕЧЕСТВО] [14.10.2000 00:53:11] < 1522 / 0 / 0 >

VK

Человек никогда не сумеет превзойти человека, объединяясь с самим собой. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК] [14.10.2000 00:53:11] < 1699 / 6 / 0 >

VK

Человек никогда не сделает ни одного шага в направлении, которое, как он знает, бесперспективно. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК] [14.10.2000 00:53:11] < 1343 / 2 / 0 >

VK

Чем больше человек будет становиться человеком, тем меньше он согласится на что-либо иное, кроме бесконечного и неистребимого движения к новому. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК, БОЛЬШЕ] [14.10.2000 00:53:11] < 691 / 0 / 0 >

VK

Человек родился из общего пробного нащупывания Земли. Он возник по прямой линии, из совокупного усилия жизни. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК, УСИЛИЯ] [14.10.2000 00:53:11] < 1052 / 4 / 0 >

VK

Пассивность составляет половину человеческого существования. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК] [14.10.2000 00:53:11] < 1293 / 2 / 0 >

VK

Волей-неволей человек опять приходит к самому себе и во всем, что он видит, рассматривает самого себя. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК] [14.10.2000 00:53:11] < 1205 / 2 / 0 >

VK

Так или иначе получается, что даже на взгляд простого биолога человеческая эпопея ничто так не напоминает, как Крестный путь. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК, ВЗГЛЯД, ПУТЬ] [14.10.2000 00:53:11] < 1299 / -1 / 0 >

VK

Фактически человек уже десятки веков смотрит лишь на себя. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК] [14.10.2000 00:53:11] < 1199 / 0 / 0 >

VK

Современный человек не знает, что делать со временем и силами, которые он выпустил из своих рук. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК] [14.10.2000 00:53:11] < 1241 / 0 / 0 >

VK

Для человека нет будущего, ожидаемого в результате эволюции, вне его объединения с другими людьми. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК] [14.10.2000 00:53:11] < 1325 / 0 / 0 >

VK

Человек вправе тревожиться о себе, когда чувствует себя потерянным и одиноким среди вещей. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК] [14.10.2000 00:53:11] < 1196 / 0 / 0 >

VK

Человек - не статистический центр мира, как он долго полагал, а ось и вершина эволюции, что много прекраснее. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК, ЦЕНТР, ВЕРШИНА] [14.10.2000 00:53:11] < 2034 / 2 / 0 >

VK

Человек остается огромной и непостижимой удачей. (Пьер Тейяр де Шарден) [ЧЕЛОВЕК] [14.10.2000 00:53:11] < 1224 / 0 / 0 >

„Кто бывал в Европе и Азии, тот лично видел, что там каждый клочок земли распахан, каждый клочок земли используется, а мы забрасываем огромные аграрные регионы. Это проблема, но это и наш потенциал. За счёт возвращения земель в сельхозоборот можно сильно увеличить объемы производства продовольствия, и должны это сделать! Для этого у нас всё есть. У нас есть свой рынок, который мы бездарно отдали зарубежным коллегам, и сегодня нас кормят зарубежные фермеры. У нас есть технологии и земли, есть люди, которые хотят работать.“

— Константин Анатольевич Бабкин Президент ЗАО «Новое Содружество» и ассоциации «Росспецмаш», председатель федерального политического совета «Партии дел… 1971

Читайте также: